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ABSTRACT ARTICLE INFO

Dopamine has many important biological functions. In this article dopamine has Keywords:
been studied theoretically. We used Gaussian 09 software program with the B3LYP Dopamine,
method at a 6-31G* basis set to optimize the geometrical structure of the dopamine DFT method,
molecule. Population analysis and UV-Vis absorption were registered and analyzed. ~ Population analysis,
The resulting natural bond orbital population analysis was observed in terms of charge gc:ll\-/;/tlizn model.
density of the atoms and occupied valence shell orbitals by electrons with the energy
of the occupation. Natural Bond Orbital Analysis which was searching for the Lewis Received: 4-November-2020,
and non-Lewis structure of the atoms in a molecular. The results showed dopamine is ~ Accepted: 14-November-2020
a Lewis structure. The Natural hybrid orbitals Analysis showed geometrical direction ISSN: 2651-3080
and the geometrical optimization of the title molecule. The Fukui functions have been
reported to calculate bonding and antibonding with the strong stabilization of the atoms
in a molecule. The convergence state for dopamine was recorded at excited 30 (n=30).
Additionally, we applied and presented the solvation model effect on UV-Vis spectra.
Six solvents (acetonitrile, chloroform, cyclohexane, dichloro-ethane, diethyl ether, and
toluene) have been chosen and their wavelengths at maximum absorbance have been
detected. The wavelength of the maximum peaks for dopamine was founded from 170
nmto 178.5 nm.

11]. Parkinsonism and schizophrenia are two diseases that
cause by the change of DA level [12, 13]. DA is the immune
system’s (IS) coregulator [14-19], organs, and tissues, for
instance, kidney and adipose tissue [20-22]. Studies have
been significantly increased since the 1980s, on
monoamines, for example, DA, serotonin, and
neuropeptides [23-26]. As well the structure analysis and
molecular reactivity of the DA are important to
understanding the ability to bonding receptor and
mechanism in the body [27].

Hence there are two significant methods of population
analysis and UV-Vis analysis to deal with the electronic
transitions and orbital behaviors. Population analysis gives

1. INTRODUCTION

Dopamine (DA) is an organic base, a benzene ring,
and two hydroxyl side group consists of its molecule
structure as illustrated in Figure 1 [1, 2] DA is a
neurotransmitter [3] and a hormone in the human body [4,
5]. DA is produced in the ventral tegmental, substantia
nigra, and hypothalamus of the brain [6] Also it is measured
as vital elements in a brain, rewards system, and act of
numerous drug abuses [7] DA has a vital role in the central
nervous system [8]. Moreover, DA participates in several
brain functions such as motor control, cognition, mood,
sexual behavior, reward systems, and pain perception [9-
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information about molecular orbitals, various types of
population analysis, and atomic charge assignments [28].
Furthermore, UV-Vis spectroscopy can determine the
guantitative and qualitative evaluation of samples [29, 30].
Ultraviolet and visible radiation interacts with mater this
leads to electronic transitions (moving electrons from the
ground state with low energy to the excited state with higher
energy state) [31]. Several factors will affect the electronic
spectra of an organic molecule; one of them is the solvent
effect [32]. Hydrogen bonding between the solute and the

solvent molecules has a significant effect [33]. Different
solvents will change peaks towards shorter or longer
wavelengths [34].

In this study, DFT method at a 6-31G* basis was used,
it is a chemical computational software program. It can
model the electronic structure of any organic molecule [35].
Here, population analysis results have been discussed. Also,
we will show the UV-Vis analysis [36-51] to deal with the
geometrical structure of DA and its UV-Vis spectra. The six
solvents were selected to see the effect of different solvents
on the electronic spectra (UV-Visible spectra).

NH,

HO

HO
Figure 1: Structure of DA

2. COMPUTATIONAL METHODS

The structure of DA was designed by ChemBioDraw
12.0 (Figure 1). The geometrical structure of DA was
optimized using Gaussian 09 software program and we
applied density functional theory (DFT) at 6-31G* basis set.
Population analysis method and UV-Vis analysis have been
done for the DA molecular structure. We checked and ran
different excited states n= 6, 12, 24, 30, and 36 to get
convergence UV-Vis spectra to state. Then we chose UV-
Vis spectra for state 30 and six solvents (acetonitrile,
chloroform, cyclohexane, dichloro-ethane, diethyl ether,
and toluene) have been selected to compare and see the
differences between their maximum peaks for DA
molecule.
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3. RESULT AND DISCUSSION

3.1. Molecular Geometry

A DA chemical formula is CgH1iiNO, [52]. The
molecule of DA consists of a benzene ring with two
hydroxyl side groups, also one amine group attached by an

ethyl chain [53]. The optimized molecular structure of DA
is obtained from Gaussian 09 [54]as displayed in Figure 2

Figure 2: Geometry of the DA molecule

3.2. .Mulliken atomic charges

The calculation of Mulliken atomic charge is
important in the quantum chemical, because of atomic
charge effects on electronic structure, molecular
polarization, dipole moment, and a lot of molecular
properties. The distribution charge on the atomic molecule
is advised to donor and acceptor pair of electrons. The
atomic charge was using to electronegativity processes
equalization and charge transmission in chemical reaction
[55-57]. The calculation Mulliken atomic charge by DFT
method on the basis set 6-31G* is showing in Table 1. It is
mentioned that C3, C4, C5, C12, and C13 on title
compounds exhibited a positive charge whereas C1, C2, and
C6 were exhibit negative charge. H18 in a hydroxyl group
was the maximum negative charge. The second maximum
negative charge is the O8 and O7 in hydroxyl groups. The
H22 was got the maximum positive charge this is due to that
hydrogen was close to the nitrogen atoms. Also, H15 had
the second maximum positive charge and it is closed to
nitrogen atoms, after that nitrogen was the third maximum
positive charge. The maximum positive charge was
distributed on the hydrogen closed to the nitrogen atoms,
but the maximum negative charge was distributed on the
hydrogen closed to the oxygen.
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Table 1: Mulliken atomic charges (e) calculated by DFT (6-31G*)

Atoms DFT (6-31G*) Atoms DFT (6-31G*)
C1 -1.95957 C12 2.24763
C2 -1.23708 C13 3.15847
C3 0.11546 N14 3.00268
C4 0.77063 H15 3.33139
C5 0.02846 H16 2.11031
C6 -1.31731 H17 -1.68366
o7 -2.14456 H18 -3.65052
08 -3.30137 H19 2.529
H9 0.50795 H20 2.46674
H10 0.66811 H21 2.97028
H11 -1.74715 H22 4.20596

3.3. Natural atomic orbital occupancies

Natural atomic orbitals (NAO) were produced from
natural population analysis (NPA). The 121 NAO functions
were listed in Table 2. The results give the information
about the type of the momentum "lang" has s, px, py, and
pz, the type of the orbitals include valence, core, Rydberg
and hydrogenic, the occupancy of the orbitals and the
energy of the orbitals. In the mentioned compound NAO 57
has the highest energy of oxygen orbitals of the natural

molecular bonds, it is Rydberg (3s) valence shell orbitals
occupied by 4.30%10 electrons, whereas NAO 55 records
the lowest energy of oxygen that is equal to -18.9945
which is core (1s) valence shell orbitals and occupied by
1.99974 electrons. The occupancies of the core displayed
the lower energy than Rydberg NAOs and valence NAOs.
The role of natural molecular bonds orbitals telling the
properties of the molecule.

Table 2: Natural atomic orbital occupancies

NAO |Atom |No |lang |[Type(AO) |Occupancy |Energy (eV) [INAO |Atom |[No [lang |[Type(AO) |[Occupancy |Energy
eV

1 C 1 S Cor( 1S) 1.99853 -10.1141 61 O 7 py Ryd(3p) |0.00177 (1.17)347
2 C 1 S Val( 2S) 0.82633 -0.13237 62 O 7 pz Val( 2p) 1.8717 -0.3278
3 C 1 S Ryd(3S) |0.00118 0.98537 63 ] 7 pz Ryd(3p) |0.00116 0.98225
4 C 1 pXx Val( 2p) 0.79274 -0.05924 64 ] 8 S Cor( 1S) 1.99976 -18.9618
5 C 1 pXx Ryd(3p) |0.00792 0.87156 65 ] 8 S Val( 2S) 1.67503 -0.89645
6 C 1 py |Val(2p) 1.08794 -0.06334 66 ] 8 S Ryd(3S) |1.60E-04 1.92595
7 C 1 py Ryd(3p) |0.00532 0.89231 67 O 8 pX Val( 2p) 1.49195 -0.30032
8 C 1 pz Val( 2p) 1.01093 -0.11306 68 O 8 pX Ryd(3p) |0.002 1.03857
9 C 1 pz Ryd(3p) |0.00157 0.67852 69 ] 8 py Val( 2p) 1.66973 -0.30409
10 C 2 S Cor( 1S) 1.99894 -10.0396 70 ] 8 py Ryd(3p) |0.00117 1.24959
11 C 2 S Val( 2S) 0.95491 -0.15627 71 0] 8 pz Val( 2p) 1.85649 -0.30125
12 C 2 S Ryd(3S) |8.70E-04 1.02112 72 0] 8 pz Ryd(3p) ]0.00134 0.97518
13 C 2 pXx Val( 2p) 1.09704 -0.04671 73 H 9 S Val( 1S) 0.76082 0.06694
14 C 2 pXx Ryd(3p) |0.0046 0.81364 74 H 9 S Ryd(2S) |0.00182 0.57027
15 C 2 py |Val(2p) 1.1622 -0.06065 75 H 10 |S Val( 1S) 0.75535 0.09592
16 C 2 py Ryd(3p) |0.00484 0.9581 76 H 10 |S Ryd(2S) |0.00115 0.57235
17 C 2 pz Val( 2p) 1.043 -0.09922 77 H 11 |S Val( 1S) 0.73932 0.10632
18 C 2 pz Ryd(3p) |0.00126 0.67197 78 H 11 |S Ryd(2S) |0.00142 0.57216
19 C 3 S Cor( 1S) 1.99894 -10.0365 79 Cc 12 |S Cor( 1S) 1.99913 -10.0446
20 C 3 S Val( 2S) 0.94402 -0.1493 80 Cc 12 |S Val( 2S) 1.03769 -0.2323
21 C 3 S Ryd(3S) |6.70E-04 1.04388 81 C 12 |S Ryd(3S) |7.30E-04 1.38999
22 C 3 px Val( 2p) 1.09671 -0.04708 82 C 12 |px Val( 2p) 1.05601 -0.07065
23 C 3 px Ryd(3p) |0.00384 0.85363 83 C 12 |px Ryd(3p) |0.00152 0.60328
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24 C 3 py |Val(2p) 1.16763 -0.0553 84 C 12 |py |Val(2p) 1.25309 -0.09168
25 C 3 |py [Ryd(3p) [0.00477 1.00165 85 C 12 [py [Ryd(3p) [0.00556 0.89553
26 C 3 |pz [val(2p) [1.0297 -0.09628 (86 C 12 [pz |val(2p) [1.14685 -0.08437
27 C 3 |pz [Ryd(3p) [9.70E-04  [0.64549 87 C 12 [pz |Ryd(3p) [0.00116 0.65139
28 C 4 S Cor( 1S) 1.99894 -10.0457 88 C 13 |S Cor( 1S) 1.9992 -10.082
29 C 4 S Val( 2S) 0.87122 -0.13458 89 C 13 |S Val( 2S) 1.0204 -0.22942
30 C 4 S Ryd(3S) [0.00118 1.07774 90 C 13 |S Ryd(3S) [0.00179 1.30796
31 C 4 px |Val(2p) 1.06639 -0.05345 91 C 13 |px  |Val(2p) 1.17334 -0.08186
32 C 4 pX Ryd(3p) [0.00531 1.16099 92 C 13 |px Ryd(3p) |0.00332 0.74133
33 C 4 |py |val(2p) [1.07785 -0.05061 |93 C 13 [py [val(2p) [0.9786 -0.06757
34 C 4 |py [Ryd(3p) [0.00441 0.91895 94 C 13 [py [Ryd(3p) [0.00321 0.63371
35 C 4 |pz |val(2p) [1.01938 -0.09356 |95 C 13 [pz  |val(2p) [1.08894 -0.06971
36 C 4 |pz |Ryd(3p) [0.00281 0.75877 96 C 13 [pz  [Ryd(3p) [0.00398 0.6615
37 C 5 |S Cor(1S) [1.99887 -10.0452 |97 N 14 s Cor(1S)  [1.99954 -14.1554
38 C 5 S Val( 2S) 0.94379 -0.15965 98 N 14 |S Val( 2S) 1.37046 -0.53027
39 C 5 S Ryd(3S) [9.60E-04 1.05015 99 N 14 |S Ryd(3S) |[3.20E-04 1.36061
40 C 5 px |Val(2p) 1.09214 -0.066 100 N 14 |px  |Val(2p) 1.58935 -0.18759
41 C 5 pX Ryd(3p) |0.00381 0.81805 101 |N 14 |px Ryd(3p) |0.00329 0.90639
42 C 5 |py [val(2p) [1.1763 007426  [102 [N 14 |py |val(2p) [1.2855 -0.16926
43 C 5 py Ryd(3p) |0.00469 0.97841 103 N 14 |py |Ryd(3p) |0.00226 0.84226
44 C 5 |pz [val(2p) [1.08943 011437 [104 [N 14 |pz |val(2p) [1.6648 -0.19693
45 C 5 pz Ryd(3p) |0.00125 0.67925 105 N 14 |pz Ryd(3p) |0.00435 0.85748
46 C 6 S Cor( 1S) 1.99853 -10.1214 106 |H 15 |S Val( 1S) 0.61572 0.14381
47 C 6 S Val( 2S) 0.83086 -0.14448 107 |H 15 |S Ryd(2S) |0.00192 0.59171
48 C 6 S Ryd(3S) [0.00151 1.0098 108 |H 16 |S Val( 1S) 0.60671 0.15477
49 C 6 px  |Val(2p) 0.99721 -0.0631 109 |H 16 |S Ryd(2S) |0.00196 0.64204
50 C 6 pX Ryd(3p) |0.00659 0.91552 110 |H 17 |S Val( 1S) 0.49768 0.1037
51 C 6 py |Val(2p) 0.85519 -0.07248 111 |H 17 |S Ryd(2S) [0.00146 0.59409
52 C 6 py Ryd(3p) |0.0047 0.81489 112 |H 18 |S Val( 1S) 0.49097 0.132
53 C 6 |pz [val(2p) [1.05856 -0.12457  [113  |H 18 [s Ryd(2S) [0.00193 0.65682
54 C 6 |pz [Ryd(3p) [9.40E-04  [0.66996 114 [H 19 s Val(1S)  [0.74926 0.08379
55 O 7 S Cor( 1S) 1.99974 -18.9945 115 H 19 |S Ryd( 2S) 0.0022 0.66588
56 O 7 S Val( 2S) 1.67475 -0.91866 116 H 20 |S Val( 1S) 0.75959 0.0782
57 0 7 S Ryd(3S) |4.30E-04 1.79832 117 |H 20 |S Ryd(2S) ]0.00221 0.66478
58 (0] 7 px  [Val(2p) 1.73675 -0.33952 118 |H 21 |S Val( 1S) 0.76169 0.09205
59 0 7 pX Ryd(3p) |0.00152 1.0985 119 |H 21 |S Ryd(2S) ]0.00216 0.65112
60 o) 7 oy [val(2p) [1.441 031771 [120 |H 22 s val(1S)  [0.76162 0.08875
121 H 22 |S Ryd( 2S) 0.00199 0.63825

3.4. Natural Bond Orbital Analysis

The other result that obtained from the output results
of the Natural Bond Orbital (NBO) Population analysis is
natural bond orbital analysis. The NBO firstly searching for
Lewis's structure. The results were summarized in table 3.
Which included a variety of information for a cycle such as
a threshold occupancy for a very good pair in a natural bond
orbital, Lewis and non-Lewis natural bond orbitals, core
number (CR), 2-Bond center (BD), 3-Bond center (3C),
Lone pair (LP), low occupancy Lewis (L), high occupancy
non-Lewis orbital (NL). The structure of the compounds
was accepted Lewis structure if all orbitals exceed
occupancy threshold and nonappearance from 1.90
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electrons. For motion DA compounds the nitrogen atom has
a higher cycle equal to eight with a higher occupancy Lewis
and Lewis structure. Table 4 demonstrates the summary of
the occupancies Lewis and non-Lewis structure with
Rydberg, core, and valence shell contribution. Also, it
shows the general description in a term of percentage for the
natural Lewis structure for total electronic density.
Generally, the DA compound presented the higher
percentage of Lewis structure is equal to 97.967%.
Moreover, table 4 describes the valance non-lewis orbitals
which were equal to 1.909% and Rydberg non-lewis equal
to 0.126%. Finally, the result demonstrated that DA was
localized to the lewis model structure.
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Table 3: Natural Bond Orbital Analysis

cycle | Occ. Occupancies Lewis Structure Lower High

Thresh ™ ewis | Non- CR BD nC LP Occ Occ

Lewis (L) (NL)
1(1) 1.9 78.5542 | 3.4458 11 23 0 7 3 3
2(2) 1.9 78.5542 | 3.4458 11 23 0 7 3 3
3(1) 1.8 78.43556 | 3.56444 11 22 0 8 3 3
4(2) 1.8 78.43556 | 3.56444 11 22 0 8 3 3
5(1) 1.7 79.04742 | 2.95258 11 23 0 7 2 3
6(2) 1.7 79.04742 | 2.95258 11 23 0 7 2 3
7(1) 1.6 79.70975 | 2.29025 11 24 0 6 1 3
8(2) 1.6 80.33106 | 1.66894 11 25 0 5 0 3
9(3) 1.6 80.27996 | 1.72004 11 25 0 5 0 3
10(4) | 1.6 | 79.70975 | 2.29025 11 24 0 6 1 3
11(5) 1.6 80.33106 | 1.66894 11 25 0 5 0 3
12(6) 16 80.27996 | 1.72004 11 25 0 5 0 3
13(7) 1.6 79.70975 | 2.29025 11 24 0 6 1 3
14(8) 1.6 | 80.33106 | 1.66894 11 25 0 5 0 3
15(9) 16 80.27996 | 1.72004 11 25 0 5 0 3
16(1) 15 79.36049 | 2.63951 11 23 0 7 0 5
17(2) 15 79.36049 | 2.63951 11 23 0 7 0 5
18(1) 1.6 80.33106 | 1.66894 11 25 0 5 0 3

Table 4: summary of Natural Bond Orbital Analysis

Core 21.99011 (99.955% of 22)

Valence Lewis 58.34096 (97.235% of 60)

Valence non-Lewis 1.56529 (1.909% of 82)

Rydberg non-Lewis 0.10365 (0.126% of 82)

Total non-Lewis 1.66894 (2.035% of 82)

3.5. Natural hybrid orbitals Analysis

From natural population analysis, one of its output
results is natural hybrid analysis. The result expressions the
comparison between the direction centerline with hybrid
direction for two nuclei. This is useful to determine the
deviation angle in a degree and bending of the bonds
between two directions. The direction of the sp* hybrid is
the specified terms of polar (0) and azimuthal (¢) angles to
vector describing p-component. In general, (sp*d* ) the
direction hybrid determined exactly to angular amplitude.
For instance, in the DA motion, the compound’s result was
shown in Table 5. The ocn for nitrogen hybrid bond (NBO
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21) bents from a line of C-N center by 1.5° whereas the
nitrogen hybrid of N-H bonds (NBOs 24, 25) bents to (2.5°)
and (2.7°) respectively. The data in Table 5 was very useful
for excepting the geometrical direction and resulting
geometrical optimization.

3.6 Perturbation Theory of Energy Analysis

In perturbation energy analysis shows that the second-
order estimates of bond or antibonding interaction on a basis
of natural bond orbitals (NBO). This is done by all
interaction possibility between donor, L (lewis types NBO,
filled) and acceptor, NL (hon-Lewis types, unfilled), and
energy by 2" order were important, it is estimated by
perturbation theory. The interaction was lead to loss of
occupancy from Lewis structure, localized NBOs to the
non-Lewis orbitals, this is referred to as correction
(delocalization) to the zero-order natural Lewis structure.
For each NBO donor (i) and NBO acceptor (j), and energy
stabilization E(2) for donor and acceptor was associated

with i = j estimated as:
E(2) = AEij(2) = qi F(i,j)2/(¢j — &i)

where qgi is the donor orbital (1 for open-shell and 2 for
closed-shell,), i and &j are orbital energies and F(i,j) is the
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Fock matrix element off-diagonal NBO. The DA molecule
was shown in table 6. The nN — 6*CH interaction between
lone pair of nitrogen and (NBO 44) and antiperiplanar
antibonding (NBO 89) it is the strongest stabilization equal

to 304.37 Kcal/mol. The heading table indicates the energy
interaction exceeds defaults the threshold equal to 0.5
Kcal/mol

Table 5: NHO Directionality and "Bond Bending" (deviations from the line of nuclear centers)

3.1. UV- Vis Analysis

UV-Vis spectroscopy is a very simple method used to
examine the structural changes and complex formation
[50]. Time-dependent (TD) B3LYP method with 6-31G*
basis set was calculated to obtain UV-Vis spectra for DA
molecules. The absorption spectrum has been represented
for n=6, 12, 24, 30, and 36 as in figures 3, 4, 5, 6, and 7
respectively. From the figures, the x-axis shows the
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[Thresholds for printing: angular deviation > 1.0 degree]

hybrid p-character > 25.0%

orbital occupancy > 0.10e
NBO Line of Centers Hybrid 1 Hybrid 2

Theta Phi Theta | Phi Dev | Theta | Phi Dev
1 BD |[( |[D)|C |1 |- |C|2 [881 238.7 85.8 2448 |65 |90.6 |555 |35
2 BD |[( |2 |C |1 |- |C|2 [881 238.7 161.6 | 322.2 | 89.8 | 161.7 | 3235 | 89.8
3 BD [( |[D)]|C |1 |- |C|6 [107 118.6 106.1 | 1131 |53 |723 [3039 |51
5 BD [( | |C |2 |- |C|3 |1049 180.4 104.1 | 1842 |38 |745 |357 3.3
6 BD |[( | |C |2 |- |H|11|732 299.4 733 2982 |12 | -- -- -
7 BD |[( |[D)]|C |3 - Cl4 107.1 119.2 107.1 | 1218 | 25 73.2 2965 | 2.6
8 BD [( |2|C |3 |- |C|4 1071 119.2 161.8 | 323 89.6 | 162.2 | 321.2 | 905
10 |BD |[( |[)[C |4 |- |C|5 |917 58.2 926 |606 |25 |89 235.7 | 2.6
11 |BD |( |[D)[C |4 |- |C |12 ]102.6 180.3 1045 | 1805 |18 | -- -- -
12 BD |[( |[D)]|C |5 - C|6 75.2 0.2 75.9 4.4 4.1 1059 | 174 6.1
13 |BD |[( |2 |C |5 |- |C|6 |752 0.2 161.4 | 322.1 | 90 161.4 | 322 89.9
15 |BD |[( [)[C |6 |- |O|7 |905 53.9 916 |571 |34 [904 |2312 |28
16 BD |[( |[D)]|]O |7 - H |17 | 109.2 120.1 108.8 | 116.1 | 3.8 -- -- --
17 |BD |( |[) ][O |8 |- |H|18 |95.6 69 942 643 |5 - -- -
18 |BD | ( |[)|C |12 |- |C |13 377 162.8 - - - 1425 | 3468 | 24
19 |BD | ( | [C |12 |- |H]|19]1125 253.9 113.6 | 2536 |11 | -- -- -
20 |[BD | (|H|C |12 |- | H]|20 |1345 106.2 135.7 | 106.7 |12 | -- -- -
21 BD |[( |D)|C |13 |- N |14 | 643 83.2 65.2 82.5 1.1 1147 | 2619 |15
22 |BD |(|H)|C |13 |- |H|?21 | 464 283.7 448 12832 |16 |- -- -
23 |BD | (|D)|C |13 |- |[H][22]106.3 185.9 105.2 | 1849 |15 | -- - -
24 |BD [([D|N[24 |- |H|15 122 1125 1195 | 1127 |25 | -- -- -
25 BD |[( |[D) [N |14 |- H |16 | 63.8 10.5 61.7 125 2.7 -- -- --
37 [P | (|D]O |7 - -- 75 2.9 - - - --
38 |[LP (|2 |07 - - 20.3 | 1414 | -- - -- -
39 [LP |(|D|O |8 - - 723 3072 | -- - - -
40 |LP |( |2 ]O |8 - - 184 1418 | -- - - -
41 |LP [( |1 [N |14 - - 394 |1815 | -- - - -
98 |BD |*( |2 |C |1 |- |C|2 |881 238.7 161.6 | 322.2 | 89.8 | 161.7 | 323.,5 | 89.8
104 |BD | *( |2 |C - | C 107.1 119.2 161.8 | 323 89.6 | 162.2 | 321.2 | 90.5
109 |BD | *( |2 |C - |C|6 |752 0.2 161.4 | 322.1 | 90 161.4 | 322 89.9
wavelength in nanometers and the y-axis shows the

absorbance. As we can see, there is a similarity between
graphs 6 and 7. It means that there is a convergence state at
excited state 30 (n=30). According to the mentioned figures
(6 and 7), the wavelength of the maximum peak for both of
them is 167nm.
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.Table 6. Second-Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

The threshold for printing: 0.50 kcal/mol
Donor NBO (i) Acceptor NBO (j) E (2) E (j) —E (i) F (1))
Kcal/ a.u. a.u.
mol

1 /BD|(|)|C|1|-|{C| 2 |/45 |BD*(|1)|O| 8 |-|H]|I18 1.7 1.12 0.039
2 | BD | (|2|C|1|-|C| 2 |/6 |BD*(|2)|C|5]|-]C]|®6 21.73 0.27 0.07
3| BD | (|DD]|]C|1]|-|C|6 |M47.|BD(|H|O| 7 |-|H]|17 1.93 1.11 0.041
4 |BD | (|D)]|]C|1]-|]O| 8 |/M48.|BD*(|H|C|5B]|-]C]| 6 1.63 1.46 0.044
5|/BD | (|DH|Cc|2|-|]C|3 |/M.|BD(|HY|C|4]|-]C]|12 3.26 1.1 0.053
6 | BD | (|DH|Cc |2 |-|HJ11|/0 |BD*(|H|C|3|-]C]| 4 3.62 1.09 0.056
7/BD|(|)|C|3|-|C| 4 |/l |BD*(|1)|C|12|-|H]|20 0.6 1.12 0.023
8 | BD| (|2|C|3]|-|C| 4 ]|/2 |BD*(|1|C|12|-|H]|20 1.04 0.68 0.026
9 | BD|(|1)|C|3|-|H|10| /53 |[BD*(|1)|C|4]|-|C]| 5 4.06 1.07 0.059
10| BD | (|1)|C |4 |-|C |5 |/B4 |BD*(|1)|C|12|-|H]|19 0.58 1.13 0.023
11| BD | (|1)|C |4 |-|C |12 | /55 |BD*(|1)|C |12 |-|H]|19 0.69 1.05 0.024
12|BD | (|)|C|5]|-|]C| 6 |/6 [BD*(|1)|C|5]|-|H 1.51 1.16 0.038
13| BD | (|2|C|5]|-|C /57. |BD*(| 2| C| 3 |-|C]| 4 18.21 0.3 0.068
14 | BD | (|1)|C |5 |-|H /58. | RY*( | 1) | C | 4 1.34 1.7 0.043
15| BD | (|[1)|C |6 |-|O| 7 |/B9 |[BD*(|1)|C |5 |-|C]| 6 0.86 1.47 0.032
6| BD | (|1)|O]| 7 |-|H|17|/60. | RY*(|1)|C | 6 1.28 1.67 0.041
7| BD | (|1)|O| 8 |-|H|18|/61. |BD*(|1)|C| 1 |-|C]| 2 4.61 1.31 0.07
18| BD | (|[1)|C|12|-|C |13 |/62. |[RY*(|3)|C | 4 1.38 1.38 0.039
18| BD | (|1)|C|12|-|C |13 |/63. |BD*(|1)|C |12 |-|H]|20 0.57 1.01 0.021
19|BD | (|| C|12|-|H|19| /64 |BD*(|2)| C| 3 |-|C]| 4 0.75 0.53 0.02
20BD | (|| C|12|-|H |20 | /65 |BD*(|1)|C |13|-|H] 21 2.33 0.94 0.042
21| BD | (|1)|C |13 |-| N |14 ]| /66. | RY*(|1)| C |12 0.71 1.62 0.03
22| BD | (|1)|C|13|-|H |21 | /67. |BD*(|1)| N |14 ]|-|H]|15 3.46 0.97 0.052
23| BD | (|1)|C|13|-|H|22|/68. |BD*(|1)|C | 4 |-|C]|12 3.25 0.91 0.049
24| BD | (|1)|N|24|-|H|15|/69. |BD*(|1)|C |13|-|H]|21 1.89 1.07 0.04
25| BD | (|1) | N|14|-|H |16 | /70. | BD*(|1)| C |13|-|H]|22 1.92 1.07 0.041
26| CR | (|D|C |1 /71. | RY*( | 2) | C | 2 1.87 10.81 0.127
21| CR | (|| C| 2 /72. | BD*(| 1) |C | 3 |-|H]|10 0.56 10.51 0.069
28| CR| (|| C|3 /73. | RY*(| 1) | C | 2 0.65 11.15 0.076
29| CR|(|D|C| 4 /74. | BD*( | 1) | C |5 |-|H]|?9 0.61 10.49 0.072
30| CR|(|D|C]|5 /75. | RY*( | 2) | C | 4 251 10.97 0.148
31| CR| (|1|C| 6 /76. | BD*(| 1) | C| 1 |-]O]| 8 0.59 10.43 0.07
2| CR|(|D|O|7 [77. | RY*( | 2)| C | 6 0.84 19.87 0.116
33| CR|(|1|O] 8 /78. | RY*( | 1) | C | 1 1.97 19.86 0.177
| CR|(|D|C]|12 /79. |BD*( |1 |C| 4 |-|C |5 0.58 10.61 0.071
3B|CR|(|1|C|13 /80. | RY*( | 3) | C | 12 0.75 11.22 0.082
36| CR| (|1 |N|14 /81 | RY*( | 1) | H | 16 0.59 14.79 0.084
37| P (|D)|O]| 7 /82. | RY*( | 1) | C | 6 247 151 0.055
3| LP | (|20 |7 /83. [BD*(|2)| C |5 |-]C | 6 23.48 0.34 0.087
9| P (]|DH]|]O]| 8 /84. |BD*(|1)|C |1 |-]C]| 6 6.04 1.12 0.074
40| LP | (|2 | O | 8 /85. [BD*(|2)|C |1 |-|]C]| 2 26.9 0.33 0.09
411 LP | (|1 | N |14 /86. [ BD*(| 1) | C |12]|-| C |13 10.75 0.59 0.071
42 | BD |*(|2)|C |1 |-|C| 2 |/87. | RY*( |4 |C |1 1.31 0.63 0.058
43| BD | *(|2|C |3 |-|]C|4|/8 |BD*¥(|1)|C|12|-|]C |13 2.1 0.32 0.051
4 |1 BD |*(]2|C|5]|-]C |6 |/89. |BD*¥(|2)|]C|]1]-|C 304.37 0.01 0.083
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nm). The smallest wavelength has been obtained by

3.1. Solvation Model of UV-Vis Analysis ) e )
cyclohexane solvation which is 170 nm. Meanwhile, the

Figures 8, 9, 10, 11, 12, and 13 demonstrated the wavelength of the maximum peak for dichloro-ethane and
spectra of DA using some solvation (acetonitrile, toluene can be found at 176.5 nm and 171 nm respectively.
chloroform, cyclohexane, dichloro-ethane, diethyl ether, Hence, chloroform and diethyl ether have the same
and toluene) of UV-Vis respectively. As indicated in the wavelength (173.5 nm) at the maximum peak.

graph, acetonitrile solvation has the greatest value (178.5
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Figure 8: UV-Vis spectra with acetonitrile solvation. Figure 9: UV-Vis spectra with chloroform solvation.
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4. Conclusion

In the present study, the theoretical analysis of DA has
been performed to analyze the compounds included charge
distribution, the results show that the atomies which was
closed to nitrogen the charge is positive but the atomies
which was closed to oxygen and the charge was negative.
Also, the energy of the occupation of the orbitals was
determined. It is important to found the properties of the
molecules. The natural bond orbital analysis was found the
lewis and non-lewis structure of the molecule. The result
has shown the DA is lewis structure. According to natural
hybrid orbital analysis, the DA molecule was higher
geometrical optimized. As well, UV-Vis spectra which
have the best designated with Gaussian function. It can be
easily calculated and the individual peaks can be resolved
correctly in very highly overlapped areas. It was noted here
that there is the convergence state for DA molecules at
excited state n=30. It is revealed that type solvents affect the
electron transitions and hence the shape of UV-Vis spectra.
The wavelength of the maximum peaks for DA molecule at
n=30 through all solvation models (acetonitrile, chloroform,
cyclohexane, dichloro-ethane, diethyl ether, and toluene)
have appeared from 170 nm to 178.5 nm. Their numbers are
close to each other but there is some shifting difference in
their wavelengths.
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