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 The aim of this study is to compare Least Squares Regression (LSR) and Principal Components 
Regression (PCR) results when multicollinearity is determined in a dataset.Inorder to examine 
the effect of the degree of multicollinearity in the study, 10 datasets with different levels of 
multicollinearity were derived. Each data set consists of three independent and one dependent 
variable, and the variables were derived from the standard normal distribution. The 
multicollinearity status in the derived data has been demonstrated by the commonly used 
metrics to determine multicollinearity. Least Squares and Principal Components Regression 
was applied to all datasets. 
When generating multicollinearity, all relationships were defined as positive in data simulation. 
However, the sign of the regression coefficients for the second (X2) and third (X3) independent 
variables were obtained as reverse (negative) as one of the expected effects of multicollinearity 
in Least Squares analysis. In the analysis of the Principal Components Regression, the sign of 
coefficients was found to be in the right direction (positive). The sign of the coefficients 
obtained from OLS and PCR were different and they also differed in magnitude. In addition, the 
standard errors of the coefficients in PCR results were lower than OLS results. 
The existence of multicollinearity must be examined while performing multiple linear 
regression analysis, and if multicollinearity is determined, one of the methods that can solve this 
situation should be used. Otherwise, the estimations to be made as a result of regression may 
lead to wrong results. In line with the results of this study, it is recommended to use Principal 
Components Regression instead of Least Squares regression in case of multicollinearity in the 
data. 
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1. INTRODUCTION 

 
FTEN a researcher or experimenter wants to find out if 
there is a relationship between two or more variables 

and show how this relationship can be expressed with an 
equation. In other words, what we really want to do is to try 
to explain the dependent variable by estimating it by the 
independent variable(s). When this process is desired to be 
done mathematically, the method to be applied is called 
regression. The equation showing the relationship between 
two (or more) variables not only shows the functional form 
of the relationship between the variables, but also enables 
predictions about the other when the value of one of the 
variables is known [1]. As a result, regression is used to 
reveal the functional relationship of the dependent variable Y 
with the independent variable(s) X and to control the 
asserted claims. If a single independent variable X is used to 
explain the dependent variable Y, this regression is called 
simple regression, while if two or more independent variable 
X is used to explain the dependent variable Y, the regression 
is called multiple regression. 

If the assumption that the independent variables are not 
related to each other, which is one of the assumptions of the 
multiple linear regression analysis, is not fulfilled, the 

problem called the multicollinearity problem is encountered 
[2]. In this case, there will be some negative effects on the 
results to be obtained by regression [3]. In the most general 
form, the estimates will be very different from the actual 
results of the parameters to be estimated, and very different 
estimates and signs will be obtained for the parameters. 
There are many suggested methods to overcome this 
situation. Basically, it is recommended to be careful in the 
selection of the variables that will form the data at the 
beginning [4]. In addition, adding different observations to 
the data, rebuilding the model, or using some biased 
estimation methods are the most common methods. But 
instead of doing all these, it is better to use biased estimation 
methods instead of adding or removing data. The most 
effective way to eliminate the problems that occur in the 
presence of multicollinearity is to estimate the regression 
coefficients biasedly without adding or subtracting the 
variables in the model. Principal Component Regression is 
the most preferred method that uses biased estimation results 
[3].  

The aim of this study is to show how the results of the 
least-squares method, which is frequently used in linear 
regression analysis, are affected in the case of 
multicollinearity between independent variables. Another 
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aim is to compare the results of principal components 
regression (PCR) and the LSR method used in case of a 
multicollinearity problem. 
 
2. MATERIAL and METHODS 

2.1. Data set 
 

Our aim in this study is to compare the results of Least 
Squares and Principal Component Regression analyses by 
making analyzes with datasets containing different degrees 
of multicollinearity. For this purpose, 10 data sets were 
derived using the simulation technique with IBM SPSS 
Statistics version 25.0 [5]. All derived data sets contained 3 
independent (x1, x2, and x3) and 1 dependent (y) variable, 
and each variable was derived according to standard normal 
distribution. 

In order to obtain 10 data sets that will contain 
multicollinearity at different degrees, data sets consisting of 
1000 observations were derived, provided that the correlation 
values between the dependent variable and independent 
variables were kept constant and the correlation values 
between the independent variables were increased. The 
correlation values between the properties and variables of 
these data sets are given in Table 1. 

 
TABLE I 

Correlati
on  

represent
ation  

between 
variables 

The value of the correlation between the variable 

x1-x2 0.75 0.8 0.85 0.9 0.95 0.95 0.95 0.95 0.95 0.95 

x1-x3 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

x2-x3 0.50 0.50 0.50 0.50 0.50 0.55 0.6 0.65 0.7 0.75 

y-x1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

y-x2 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

y-x3 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 
 
 

2.2. Regression 
Regression analysis can be defined as “making 

correlations by mathematically modeling and explaining the 
relationship between the dependent variable and the 
independent variable(s)”. The obtained relations are 
expressed with the help of equations (regression equations). 
Regression equations vary according to the linearity of the 
relationship between two variables, the data type structure of 
the dependent variable, and the number of independent 
variables [6]. The main purpose is to make estimations with 
the obtained regression equations. In other words, it is 
estimating a variable that is difficult to obtain with some 
easily obtainable variables. Variables are affected negatively 
or positively by some factor or factors. In addition, some of 
the factors may have a great effect, while others may have a 
very low effect [7]. 

In the regression model, if there is a dependent and an 
independent variable and the relationship between these 
variables shows a linear structure, the regression is called 
simple linear regression. The method used to explain the 
cause-effect relationships between two or more independent 
variables affecting a variable with a linear model and to 
determine the effect levels of these independent variables is 
called multiple linear regression analysis [7]. 

The most common method used to estimate the 
coefficients in the regression equation is the Least Squares 
method. Apart from many possible regression methods, the 
Least Squares method is generally used as the most 
appropriate estimation method due to its simplicity in 
mathematical calculations. [8]. The aim of this method is to 
optimize the model by minimizing the optimum results, in 
other words, the sum of the squares of the error terms, if the 
variances of the error terms are homogeneous and normally 
distributed [9]. 

2.3. Multicollinearity Problem 
One of the most common problems in multiple linear 

regression analysis is the existence of a linear relationship 
between independent variables, that is, multicollinearity. If 
one of the independent variables is expressed as a linear 
function of the other independent variable or variables, the 
existence of a linear relationship between the independent 
variables is mentioned. Multicollinearity can lead to 
incorrect estimation of the regression coefficients, and 
exaggeration of the standard errors of the regression 
coefficients, resulting in an increase in the confidence 
intervals and a decrease in the t-test value. The enlargement 
of the standard error may cause statistically significant 
regression coefficients to be insignificant, thus resulting in 
incorrect results. 

The correlation matrix between the independent variables 
is used to determine whether there is multicollinearity or not. 
If the absolute value of the correlation coefficient between 
the variables is close to 1, it is stated that there is 
multicollinearity between those independent variables. As 
these values get larger (VIF values ≥ 10) for variance 
swelling values (VIF), it can be mentioned that there is 
multicollinearity between the relevant independent variables. 
The larger the VIF value, the greater the multicollinearity 
between the variables. In general, when the VIF value is 
above 10, it is accepted that there is multicollinearity 
between those variables. The determinant of the correlation 
matrix of the independent variables ranges from 0 to 1 and 
can be used to determine multicollinearity. When the 
determinant of the correlation matrix is 1, it is stated that 
there is no linear dependence between the variables, but 
when the determinant of the correlation matrix is 0, there is 
multicollinearity between the variables. The smaller the 
determinant value, the higher the degree of multicollinearity. 
If one or more characteristic roots (eigenvalues) of the 
correlation matrix are zero or close to zero, it is said to be 
multicollinear. The ratio of the largest to the smallest 
eigenvalues (λmax / λmin) is also used as a measure of 
multicollinearity, and the larger this ratio, the higher the 
degree of multicollinearity. In general, when the ratio (λmax 
/ λmin) is less than 10, it is stated that there is no serious 
multicollinearity in the data set. In addition, Although none 
of the t values of the regression coefficients are significant, 
the fact that the F statistic belonging to the regression model 
is significant is an indication of the existence of 
multicollinearity in the data set [10-12].  

In the case of multicollinearity, new variables can be 
added to the data or one or more of the multilinked variables 
in the dataset can be removed from the model. However, by 
removing the variables from the model, a variable that really 
contributes to the model may be removed, which causes 
information loss. Methods that are less sensitive to 
multicollinearity than the least-squares method are generally 
used to estimate the regression coefficients without removing 
the variables in the model. At the beginning of these 
methods, it is recommended to use ridge regression and 
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principal component regression methods, which give biased 
estimates. 

 
2.4. Principal Components Regression 

Principal Components Regression is one of the biased 
estimation methods used in the presence of multicollinearity 
in the data. It was first discussed by Hotelling in 1933. In this 
method, the aim is to apply the Least Squares method on a 
set of artificial variables obtained from the correlation matrix 
and called principal components, that is, obtained by 
operation. In Principal Components Regression, which can 
be used to eliminate the multicollinearity situation, the 
regression coefficients are estimated by applying the Least 
Squares regression method on a set of new, that is, artificial 
variables obtained with the help of their orthogonal 
transformations instead of the original variables in the data 
set. In the estimation using Principal Component Regression, 
it is expected that the mean squared error value will take a 
smaller value than the estimation made by the Least Squares 
regression method [13-16]. 

2.5. Data Analyses 
The suitability of the derived data to the multiple normal 
distributions was examined with the "Normal Distribution 
Analysis Software" developed by the Biostatistics and 
Medical Informatics Department of İnönü University Faculty 
of Medicine [17]. First of all, multiple linear regression 
analysis was applied to the sets obtained by simulation 
technique with IBM SPSS Statistics version 25.0 package 
program [18]. As a result of the analysis, the existence of 
multiple connections in the data set was examined. The 
existence of multicollinearity was supported by looking at 
the VIF, tolerance values, eigenvalues, and the condition 
index. R programming language was used for Principal 
components regression, which will be compared with least 
squares regression results. For principal components 
regression, the pcr function available in the pls package in 
the R programming language was used. The functions 
written in order to be able to analyze are visualized with the 
Shiny library in the R studio environment. The screenshot of 
the image is given in figure 1. 
 

 
 
 

3. RESULTS 
The information on the measures used in determining the 
presence of multicollinearity for 10 data sets with different 
degrees of multicollinearity used in the study is presented in 
Table 2 
 
 

TABLE II 
TABLE OF CRITERIA FOR DETERMINING MULTICOLLINEARITY FOR DATASETS 

WITH DIFFERENT DEGREES OF MULTICOLLINEARITY 
NUMBER OF 
OBSERVATI

ON 

INDEPENDE
NT 

VARIABLES 
VIF 

TOLERA
NCE 

VALUE 

EIGE
NVAL

UE 

CONDITI
ON. 

INDEX 

n=1000 

x1 
16.8
785

0 
0.05925 2.4709

6 1.00 

x2 4.04
280 0.24735 0.4935

5 5.01 

x3 9.67
960 0.10331 0.0355

0 69.61 

n=1000 

x1 
44.1
822

0 
0.02263 2.5033

5 1.00 

x2 
10.8
902

0 
0.09183 0.4830

3 5.18 

x3 
20.8
343

0 
0.04800 0.0136

2 183.84 

n=1000 

x1 
165.
554
10 

0.00604 2.5209
2 1.00 

x2 
46.7
572

0 
0.02139 0.4754

3 5.30 

x3 
64.3
616

0 
0.01554 0.0036

5 691.17 

n=1000 

x1 
235.
737
70 

0.00424 2.5011
8 1.00 

x2 
79.7
983

0 
0.01253 0.4962

7 5.04 

x3 
78.9
863

0 
0.01266 0.0025

5 980.73 

n=1000 

x1 
441.
517
20 

0.00226 2.5300
2 1.00 

x2 
168.
387
60 

0.00594 0.4686
1 5.40 

x3 
123.
118
60 

0.00812 0.0013
7 1848.17 

n=1000 

x1 
249.
431
30 

0.00401 2.5737
9 1.00 

x2 
94.9
926

0 
0.01053 0.4237

6 6.07 

x3 
66.4
486

0 
0.01505 0.0024

5 1050.42 

n=1000 

x1 
158.
994
70 

0.00629 2.6178
2 1.00 

x2 
60.9
601

0 
0.01640 0.3783

0 6.92 

x3 
40.4
779

0 
0.02470 0.0038

9 673.85 

n=1000 

x1 
109.
189
50 

0.00916 2.6618
6 1.00 

x2 
42.6
564

0 
0.02344 0.3324

3 8.01 

x3 
26.5
787

0 
0.03762 0.0057

1 465.93 

n=1000 x1 
79.3
631

0 
0.01260 2.7057

9 1.00 
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x2 
32.0
937

0 
0.03116 0.2862

8 9.45 

x3 
18.5
220

0 
0.05399 0.0079

3 341.24 

n=1000 

x1 
59.9
601

0 
0.01668 2.7499

3 1.00 

x2 
25.7
509

0 
0.03883 0.2395

1 11.48 

x3 
13.4
605

0 
0.07429 0.0105

7 260.23 

 
 
 

When Table 2 was examined, it was observed that VIF 
values were above 10, and above 30 when the degree of 
multicollinearity increased. Similarly, the existence of 
multicollinearity was proved by obtaining eigenvalues close 
to 0 and tolerance values approaching 0. Condition indexes, 
another multicollinearity indicator, also supported the 
existence of multicollinearity. The least-squares regression 
and principal components regression results applied to these 
datasets are presented in Table 3. 
 

TABLE III 
TABLE OF RESULTS OF LSR AND PCR FOR DATASETS WITH DIFFERENT 

DEGREES OF MULTICOLLINEARITY 

NUMBE
R OF 

OBSERV
ATION 

VA
RIA
BL
ES 

LSR 
REGRESSI

ON 
COEFFICI

ENTS 

LS
R 

LS
R 
R2 

LS
R 

PCR 
PCR 

PC
R 
R2 

PC
R 
sig
ma 

ST
AN
DA
RD 

sig
ma 

COE
FFIC
IEN
TS 

       
STA
NDA
RD 

ER
RO
R     

       
ERR
OR 

n=1000 

sabi
t -0.00586  

0.6
685
127
11 

0.5
803
663
07 

-
0.017

16  
0.5
568
610
24 

0.6
710
250
4 

x1 159.867 0.07
344 

0.260
96 

0.008
96 

x2 -0.12979 0.03
644 

0.411
49 

0.024
65 

x3 -0.83471 0.05
551 

0.135
88 

0.019
12 

n=1000 

sabi
t -0.005685  

0.7
444
569
72 

0.5
078
735
75 

-
0.019
505  

0.5
466
360
28 

0.6
764
677
57 

x1 3.148.592 
0.10
398

6 

0.266
733 

0.008
574 

x2 -0.962421 
0.05
220

1 

0.396
218 

0.024
229 

x3 -1.809.292 
0.07
135

7 

0.125
027 

0.020
592 

n=1000 

sabi
t 0.00100  

0.9
988
679
95 

0.0
330
588
4 

-
0.021

18  
0.5
506
015
70 

0.6
586
870
34 

x1 844.752 0.01
303 

0.268
31 

0.008
06 

x2 -396.968 0.00
702 

0.377
78 

0.022
87 

x3 -497.492 0.00
818 

0.118
44 

0.021
20 

n=1000 

sabi
t 0.00187  0.9

982
158
12 

0.0
413
923
57 

-
0.027

12  0.5
029
512
18 

0.6
908
747
76 

x1 1.083.777 0.02
010 

0.273
57 

0.008
73 

x2 -581.548 0.01
182 

0.354
18 

0.023
42 

x3 -599.535 0.01
172 

0.124
53 

0.023
41 

n=1000 

sabi
t 0.00114  

0.9
968
433
17 

0.0
550
437
8 

-
0.021

12  
0.5
285
087
31 

0.6
727
126
48 

x1 1.361.870 0.03
474 

0.268
49 

0.008
04 

x2 -806.414 0.02
194 

0.341
23 

0.021
74 

x3 -707.178 0.01
881 

0.123
13 

0.023
30 

n=1000 

sabi
t -0.00087  

0.9
984
156
03 

0.0
389
853
05 

-
0.021

57  
0.5
254
949
47 

0.6
746
668
83 

x1 1.039.442 0.01
858 

0.265
55 

0.008
00 

x2 -598.341 0.01
169 

0.348
62 

0.022
74 

x3 -516.923 0.00
979 

0.111
32 

0.024
53 

n=1000 

sabi
t 0.00134  

0.9
988
303
34 

0.0
334
749
48 

-
0.022

14  
0.5
224
508
97 

0.6
763
912
55 

x1 841.439 0.01
280 

0.263
14 

0.007
98 

x2 -471.336 0.00
805 

0.357
27 

0.023
89 

x3 -399.810 0.00
656 

0.097
38 

0.026
00 

n=1000 

sabi
t -0.00087  

0.9
992
858
43 

0.0
261
520
56 

-
0.023

05  
0.5
198
836
84 

0.6
780
819
34 

x1 706.912 0.00
833 

0.261
90 

0.008
00 

x2 -386.264 0.00
527 

0.369
32 

0.025
25 

x3 -319.804 0.00
415 

0.079
26 

0.027
80 

n=1000 

sabi
t 0.00143  

0.9
994
668
39 

0.0
225
902
81 

-
0.023

88  
0.5
184
352
34 

0.6
789
215
43 

x1 610.250 0.00
617 

0.262
51 

0.008
11 

x2 -326.198 0.00
395 

0.385
02 

0.026
84 

x3 -261.594 0.00
299 

0.056
15 

0.030
04 

n=1000 

sabi
t -0.00137  

0.9
996
035
74 

0.0
194
793
55 

-
0.024

65  
0.5
179
399
63 

0.6
792
727
06 

x1 536.803 0.00
464 

0.266
50 

0.008
43 

x2 -282.543 0.00
305 

0.407
54 

0.028
76 

x3 -215.966 0.00
220 

0.022
82 

0.033
01 

 
Models and coefficients for all data sets were statistically 
significant. In order to obtain multiple connections, all 
relations were defined positively in the data generation. 
However, as one of the expected effects of multicollinearity 
in the least-squares analysis, the regression coefficients for 
the independent variables x2 and x3 were obtained with 
inverse (negative) signs. In the analysis of Principal 
Components Regression, the sign of the coefficients was 
found to be in the right direction (positive). The coefficients 
obtained in the LSR analysis and the coefficients obtained as 
a result of the PCR analysis are different from each other in 
terms of magnitude, although they are different in sign. In 
addition, the standard errors of the coefficients in PCR 
results are lower than in the LSR results. 
 
4. DISCUSSION 

If the assumption that the independent variables are not 
related to each other, which is one of the assumptions of the 
multiple linear regression analysis, is not fulfilled, the 
multicollinearity problem is encountered. This situation may 
cause the real values of the parameters to be estimated 
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cannot be obtained, the absolute values of the estimations to 
be large and the signs of the estimations to change. Due to 
the negative effects of the multicollinearity situation in the 
data on the obtained regression model, this situation should 
be eliminated or its effect should be reduced [19]. There are 
some suggested methods for eliminating the multi-
connection situation. The first thing to do is to select the 
variable appropriately during the creation of the regression 
model. In addition, adding new observations to the data, 
rebuilding the model, or using some biased estimation 
methods are also methods used in the process of eliminating 
multicollinearity. Each method may have its own application 
area and drawbacks. For example, it is recommended to add 
new observations appropriate to the data in a 
multicollinearity situation that arises because the sample 
created does not represent the universe from which it was 
selected very well. However, it may not always be possible 
to add sampling units. One or more independent variables 
may need to be dropped from the model. This process is 
called model redefinition. In this process, which variables 
will be removed from the model may be a problem and this 
approach may cause us to define the model incorrectly [3, 
20].  

Another approach that can be used to cope with the 
negative effects of multicollinearity on the model is the use 
of biased estimation methods. The most preferred methods 
using biased estimation results are Principal Component 
Regression, Ridge Regression, and Partial Least Squares 
Regression. 

In this study, it was aimed to remove the effects of 
multicollinearity by applying PCR to the datasets in which 
the effects of multicollinearity were observed and to 
determine in which cases PCR can be used instead of LSR 
regression. For this reason, both methods were applied to the 
10 data sets in the data group that was derived to have 
different degrees of multicollinearity for our purpose. 
Although the relationships between all variables were 
defined to be positive while generating the data, as one of the 
expected effects of multicollinearity, the sign of the 
regression coefficients for x2 and x3 variables was obtained 
as negative in the LSR analysis. In PCR results, the signs of 
the coefficients are positive. LSR regression coefficients are 
also different as a numerical size from PCR results, and the 
coefficient value tends to increase as multicollinearity 
increases. At the same time, the standard errors of the LSR 
coefficients are also larger than the PCR results. Although it 
seems more explanatory for the LSR analysis, the 
estimations to be made with the help of this model will not 
be correct since the assumptions are not provided. 

As a result, the existence of multicollinearity should be 
examined while performing multivariate models and one of 
the regression methods using biased estimation results 
should be used as a solution to this situation. Otherwise, the 
estimations to be made may lead to wrong and biased results. 
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