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1. Introduction 
Small intestinal motility mixes the chyme with digestive 
enzymes and bile secretion, and transports the content 
throughout the gut in coordination with the digestive and 
absorption functions. The postprandial pattern, which occurs 
in the small intestine following food intake, consists of 
segmentation and peristalsis. In the fasted state, a unique and 
complex pattern comes into play in the whole small intestine 
(1). This pattern consists of 3 phases in which the contractile 
activity at any point in the small intestine has shown recurrent 
differences. Firstly, there are not almost contractions for 
about 40-50 minutes (phase I),  and later many irregular 
contractions occur for 30-40 minutes (phase II). Finally, 
intense contractions occur for 5-10 minutes (phase III). Then 
phase I begins again, and the cycle rhythmically continues 
approximately every 90-120 minutes until the next meal in 
human. The cycle starting in the most proximal part of the 
small intestine moves (migrates) towards the distal portion of 
the intestine (2). Because of its migration, this complex has 
been termed “the migrating motor/motility complex” by 
Foulk et al. in 1954 (3). The physiological significance of this 

complex is that it moves the undigested food residues, 
gastrointestinal (GI) secretions, and dead cells from the 
stomach and small intestines to the large intestine, having 
prevented the bacteria from transitioning from the large 
intestine to the small intestine. Because of these crucial 
functions, the migrating motor/motility complex is called the 
“housekeeping of the gastrointestinal tract” (4).  

First, Szurszewski (1969) demonstrated that the 
electrical changes (slow and spike waves), which are recorded 
in the smooth muscle of the small intestine in dogs, forming 
the origin of the migrating motor/motility complex and also 
termed the “migrating myoelectric complex: the MMC” (5). 
Obviously, the control mechanism of the MMC is complex 
because it occurs rhythmically and regularly. Many 
neurohumoral factors play a role in the formation/ regulation 
of the MMC, such as mainly motilin, acetylcholine, 
somatostatin, pancreatic polypeptide, serotonin, xenin, and 
ghrelin (6-13). Furthermore, the enteric nervous system 
initiates, maintains, and coordinates the MMC while the 
parasympathetic/sympathetic nervous system is only involved 
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in the coordination of the MMC (14-16).  

The endocannabinoid system comprises endogenous 
ligands, synthesis/degradation enzymes, and primary 
receptors (cannabinoid receptor-1 and cannabinoid receptors-
2). Endocannabinoid ligands, mainly anandamide and 2-AG, 
are produced on demand from membrane phospholipids in 
postsynaptic neurons. The ligands are released immediately 
without being stored in vesicles and then function as 
retrograde messengers (17, 18). Cannabinoid receptor-1 
(CB1R) is mainly expressed in the central nervous and enteric 
nervous systems, and one of its primary functions is 
modulating neurotransmitter release in several neurons (19). 
In contrast, cannabinoid receptor-2 (CB2R) is mainly 
expressed in immune system organs, such as the thymus, and 
spleen and is often referred to as the peripheral cannabinoid 
receptor. The major receptors of endocannabinoids are seven-
transmembrane G-protein-coupled receptors, leading to the 
suppression of adenylate cyclase activity (20, 21). 

Endocannabinoid system components are present in the 
GI tract. Endogenous ligands or their pharmacological 
modulation (ligand, receptor agonists, inhibitor of catabolic 
enzyme) can cause inhibition in GI functions, such as gastric 
emptying, peristalsis, and defecation; conversely, suggesting 
that specific CB1R/CB2R blockage can lead to excitation of 
the functions (18, 22, 23). In the postprandial state, there is 
substantial evidence that CB1R/CB2R mediates the inhibitor 
effects of cannabinoids on GI motility. In vitro study results 
have shown that nonspecific CBR agonists and specific-CB1R 
agonists activate CB1R and reduce the amplitudes of smooth 
muscle contractions induced by electrical field stimulation in 
the gastric fundus, antrum, ileum, and colon preparations state 
(24-29).  Similarly, in vivo studies supported that CB1R 
activation has inhibited GI transit in the fed states (18, 30-32). 
Furthermore, particular CB2R receptor agonists have been 
proven in multiple studies to reduce increased GI transit 
caused by various pathological conditions (e.g., inflammation, 
colitis, irritable bowel syndrome).  Consistent with these 
findings, peripheral CB1R activation has also inhibited the 
MMC pattern generating the origin of fasting motility (33). 

However, it is unknown whether (a) central/peripheral 
CB2Rs have a tonic role in the regulation/formation of the 
MMC and (b) whether central/peripheral CB2R activation by 
exogenously administered CB2R agonist affects the MMC 
pattern. For this purpose, to investigate the role of CB2Rs in 
migrating myoelectric complex, we examined whether (1) 
central and peripheral administration of CB2R antagonists and 
(2) central and peripheral administration of CB2R agonists 
caused any change in the MMC pattern.  

2. Material and Methods 
2.1. Animals 
We obtained adult male Sprague Dawley rats weighing 250 to 
300 g from the Animal House of Ondokuz Mayıs University 
(Samsun, Turkey). We housed them in a quiet, temperature- 

and humidity-controlled room at 22±1°C for a 12-h 
alternating light-dark period, and gave food and water ad 
libitum. We conducted all protocols and procedures under the 
Guide for the Care and Use of Laboratory Animals (NIH 
Publication, 865–23, Bethesda, MD, USA).  

2.2. Surgical procedures 
We used ketamine [50 mg/kg; intraperitoneal (i.p)] and 
chlorpromazine (25 mg/kg; i.p) to anesthetize the male 
Sprague-Dawley rats and, through a midline incision, placed 
three bipolar stainless Ni/Cr wire electrodes (Driver-Harris, 
Cedex, France) into the muscular wall of the small intestine 
15 (J1), 25 (J2), and 35 (J3) cm distal to the pylorus for 
electromyographic (EMG) recordings.  We placed a catheter 
in the right jugular vein to reveal the peripheral effect of the 
substance, and a 24-gauge cannula in the right lateral 
ventricle (1.5 mm caudal, 2 mm lateral from Bregma; 6 mm 
ventral from the skull surface) to administer drug centrally. 
We tunneled the electrodes and cannula subcutaneously to 
exit the back of the animal’s neck.  Later, we tunneled both 
the EMG electrodes and the catheter subcutaneously and 
externalized them at the back of the animal’s neck. We then 
fixed the EMG electrodes to the skull with dental acrylic. We 
housed all the male rats, one in each cage after surgery. We 
treated the rats with antibiotics (Ampicillin; 100 mg/kg; 
intramuscular) and analgesics (Metamizole Sodium; 100 
mg/kg; i.p.) for the first three days following surgery (34).  

We adapted the rats to the experimental conditions by 
putting them in Bollman cages (Bahadır Co., Turkey). We 
performed this putting process for 2 hours a day until the 
experiment day (7th post-operative day).We made the rats 
hungry for 18 hours without water restriction in wire-
bottomed cages before experiments for EMG recording (12, 
14, 33). We performed all the experiments on conscious rats 
in the Bollman cages. We recorded and analyzed EMG 
recordings amplified with a bioamplifier (ML132, 
ADInstruments, Australia) by the PowerLab data acquisition 
system (ML870/P, PowerLab 4/SP, AD Instruments, Castle 
Hill, NSW, Australia)  

2.3. Design of electromyography studies 
The experiments started with a control recording of baseline 
myoelectric activity with three MMC cycles propagated over 
all three sites (J1, J2, J3) for at least one hour. We started 
administering the drug at the end of the fourth MMC cycle at 
J1 sites. After drug application, we took recordings for a 
minimum of one hour. We tested each animal was tested 2-5 
times with an interval of 3 days. 

- In the first series of experiments, we injected a vehicle 
(10% DMSO) intravenously (i.v.) in a volume of 1 ml/kg 
(n=7). 

- In the second series of experiments, we injected a vehicle 
(10% DMSO) intracerebroventricularly (i.c.v.) in a 
volume of 5 µl/rat (n=7). 
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- In the third series of experiments, we injected JWH 133, 
CB2R agonist, at doses of 1.25-10 mg/kg intravenously 
(n=7).  

- In the fourth series of experiments, we injected JWH 133, 
CB2R agonist, at doses of 2.5-20 µg/rat 
intracerebroventricularly (n=7).  

- In the fifth series of experiments, we administered AM 
630, CB2R antagonist, at doses of 0.25-2 mg/kg 
intravenously (n=7).  

- In the sixth series experiment, we administered AM 630, 
CB2R antagonist, at doses of 2.5-20 µg/rat 
intracerebroventricularly (n=7).  

2.4. Drugs and chemicals 
We prepared all drugs on the experimental days just before 
drug administration. We dissolved agonists and antagonists 
were in 10% dimethyl sulfoxide (Sigma, St. Louis, MO). We 
injected i.c.v. with a Hamilton syringe in a volume of 5 µl/rat, 
and administered i.v. within a volume of 1 ml/kg with an 
insulin syringe. We purchased from JWH 133 (CB2R-
selective agonist) and AM 630 (CB2R-selective antagonist) 
from PolyPeptide (Strasbourg, France). We selected the 
agonist and antagonist doses investigated in our study by 
considering the doses of these agents that are effective on the 
GI system in the literature (35-41).  

2.5. Data analysis 
We characterized the typical feature of intestinal myoelectric 
activity in the interdigestive period, or phase III of the MMC, 
as a period of clearly distinguishable intense spike waves, 
propagating aborally through the all recording segment and 
followed by a period of quiescence, phase I of the MMC 
having only slow waves and identified phase II of the MMC 
as a period of irregular spike waves. Within 1 hour after drug 
administration, we calculated spike frequency and numbers of 
the MMC cycles in all three sites (J1, J2, and J3) and 
analyzed them with the LabChart 7.0 program (12, 33). 

2.6. Statistics 
We converted all of the obtained EMG recordings to 
numerical values and used GraphPad Instat (v3.06) software 
for statistical analysis (San Diego, CA, USA). After 
determining that all the data were normally distributed, we 
performed a one-way analysis of variance (ANOVA) and 
Tukey–Kramer post hoc tests for multiple comparisons 
between groups. We expressed all values used in the graphics 
as mean±standard error (SEM). We considered p< 0.05 was 
considered statistically significant for all statistical tests, 

3. Results 
In the interdigestive period, all animals showed a fasted motor 
motility with recurrent MMC cycles propagated to the distal 
intestinal segments. Fig. 1 shows the characteristics of the 
MMC pattern at all theree jejunum sites in the EMG 
recording.

 

 
Fig. 1. In a conscious and fasted rat, three regular the MMC cycles at all three points (red lines) and drug injection at the end of the 4th the 
MMC cycle at J1 point (red arrow)

3.1. Effects of exogenously administered JWH 133, CB2R 
agonist, on fasting myoelectric activity by activation of 
peripheral/central CB2Rs 
The effect of intravenously administered JWH 133 on the 
MMC pattern 
Intravenous 10% DMSO administration (1 ml/kg), the solvent 

of JWH 133, did not change spike frequency and numbers of 
the MMC cycles at J1, J2, and J3 sites within one hour after 
administration compared to the baseline recording period. 
We, therefore, compared the effects of JWH 133 doses (1.25-
10 mg/kg, i.v.) on the MMC pattern to the i.v. vehicle group. 
After i.v. injection of the CB2R selective agonist JWH 133 at 
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1.25-10 mg/kg, it did not cause a statistically significant 
change in spike frequency at all three jejunal sites (Fig.2a). 
Additionally, the number of the MMC cycles remained 
unchanged by i.v. administered JWH 133 at jejunal recording 
sites (Fig. 2b). 

The effect of intracerebroventricularly administered JWH 133 
on the MMC pattern 
After 10% DMSO injection (5 µl/rat, i.c.v.), the MMC pattern 
on baseline recording remained unchanged at jejunal 
recording sites compared to the control period. For this 
reason, we compared i.c.v. administrations of JWH 133 doses 
(2.5-20 µg/rat) on the MMC pattern according to the vehicle 
group. JWH 133 administered intracerebroventricularly, at 
doses of 2.5-20 µg/rat, did not cause a statistically significant 
change in spike frequency and the number of the MMC cycles 
in all recording sites compared to the vehicle group (Fig. 3a 
and b). 

3.2. Tonic involvement of CB2Rs in formation/regulation of 
fasting myoelectric activity 
 
The effect of intravenously administered CB2R antagonist AM 
630 on the MMC pattern 
After intravenous administration of AM 630, at doses of 0.25-
2 mg/kg, it did not induce a statistically significant alteration 
in spike frequency at all three jejunal sites (Fig. 4a).  

 

 
Fig. 2. Comparison of effect of different intravenous doses of CB2R 
selective agonist, JWH 133, on the MMC pattern its spike frequency 
(a) and number of the MMC cycle (b) (Mean+S.E.M., n=7) 

 

Fig.  3. Comparison of effect of different intracerebroventricular 
doses of CB2R selective agonist, JWH 133, on the MMC pattern in 
its spike frequency (a) and number of the MMC cycle (b) 
(Mean+S.E.M., n=7) 

 
Fig. 4. Comparison of effect of different intravenous doses of CB2R 
selective antagonist, AM 630, on the MMC pattern in its spike 
frequency (a) and number of the MMC cycle (b) (Mean+S.E.M., 
n=7) 
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Also, the number of the MMC cycles at J1, J2, and J3 sites 
did not alter by i.v. administration of AM 630 dosages 
compared to the vehicle group (Fig. 4b). 

 

Fig. 5. Comparison of effect of different intracerebroventricular 
doses of CB2R selective antagonist, AM 630, on the MMC pattern in 
its spike frequency (a) and number of the MMC cycle (b) 
(Mean+S.E.M., n=7) 

The effect of intracerebroventricularly administered CB2R 
antagonist AM 630 on the MMC pattern 
Following approximately a one-hour baseline recording of i.v. 
AM 630 injection (2.5-10 µg/rat), neither the spike frequency 
nor the number of the MMC cycles were affected at J1, J2, 
and J3 sites compared to the vehicle group (Fig. 5a and b). 

4. Discussion 
Our study investigated the roles of CB2Rs, which function in 
the gastrointestinal tract, in forming and regulating of the 
MMC in rats. For this purpose, we investigated the possible 
effect of CB2R agonists and antagonists on the MMC pattern. 
Intravenously and intracerebroventricularly administrations of 
CB2R agonist JWH 133 and CB2R antagonist AM 630 were 
ineffective on the MMC pattern, the spike frequency and the 
number of the MMC cycles. 

Many studies have shown the presence of 
endocannabinoid system components in the gastrointestinal 
tract. Mechoulam et al. (1995) isolated 2-AG in the canine 
intestine (42). Izzo et al. (2001) demonstrated the presence of 

anandamide in the mouse’s small intestine (43).  Moreover, 
the enzyme FAAH, responsible for breaking down 
anandamide, was observed in the intestines of mice and rats 
(44-46). CB1R expression has been demonstrated in the 
enteric nervous system and epithelial cells by 
immunohistochemical studies, revealing that these receptors 
are associated with intrinsic primary afferent neurons, motor 
neurons, and interneurons of the GI tract (46, 47).  

On the other hand, CB2Rs are located in macrophages, 
plasma cells, and epithelial cells in the GI tract, suggesting 
that their expression increases in the inflammation process, 
indicating CB2Rs function in the GI system in pathological 
conditions rather than physiological states (48-50). 

According to the results of in vitro studies, 
endocannabinoids, phytocannabinoids, or synthetic 
cannabinoids bind to CB1Rs on enteric neurons, leading to a 
decrease in the release of acetylcholine from neurons and, 
finally, inhibition of contractile responses (51-56). 
Similarly, in vivo animal studies shown that it suppresses 
small intestine and colon transit and defecation emerging in 
the fed period through the activation of CB1Rs (56-59). 
Likewise, in our previous study, the CB1R-specific agonist 
ACEA dose-dependently caused an inhibitory effect on the 
MMC pattern via the activation of peripheral CB1Rs. 
Activation of peripheral CB1Rs not only exerts an inhibitory 
effect on postprandial motility but also has an inhibitory 
effect on fasting myoelectrical activity (33). 

Many animal and human studies suggest that CB1Rs 
act as inhibitor receptors on postprandial motility, but there is 
no involvement of CB2Rs (18, 31, 32, 37, 59). However, it 
was unknown whether CB2Rs participate in fasting intestinal 
motility activity.  Therefore, we investigated here the role of 
CB2Rs on the MMC.  CB2R agonist JWH 133 administered 
peripherally (1.25-10 mg/kg, i.v.) and centrally (2.5-20 µg/rat, 
i.c.v.) did not cause any change in the MMC in the present 
study in coherence with the studies in the literature. 
Furthermore, we administered CB2R antagonist AM 630 both 
peripherally (0.25-2 mg/kg, i.v.) and centrally (2.5-20 µg/rat, 
i.c.v.); however, the antagonist did not affect the MMC 
pattern. Therefore, when evaluated together with the 
experimental results mentioned above, these findings suggest 
that CB2Rs are not involved in both formation and regulation 
of the MMC as well as postprandial intestinal motility. 

Although it was believed that CB2Rs do not have a 
function in intestinal motility, the data revealed in recent 
years suggest that CB2Rs have a role in intestinal motility 
changing in pathophysiological conditions rather than 
physiological states. Mathison et al. (2004) reported the CB2R 
agonist JWH 133 decreased liposaccharide-induced intestinal 
transit in rats (39). Kimball et al. showed that JWH 133 
normalized the accelerated transit in a colitis model in mice 
(40, 41). Lastly, Lin et al. (2019) observed that  administering 
a new specific CB2R agonist, AM 1241, returns to basal colon 
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motility in rats with diarrheal-irritable bowel syndrome (60). 
For this reason, it can considered normal that CB2Rs did not 
participate in basal MMC activity in healthy fasted rats in this 
study. 

 

In conclusion, the results of the present study suggest 
that CB2Rs do not have tonic participation in the formation or 
regulation of MMC. Moreover, exogenous CB2Rs activation 
does not have a role in the regulating of MMC forming source 
of fasting motility activity in healthy fasted rats. 
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