Review

Retraction: The Relationship Between Propionic Acid and Autism Spectrum Disorder

Year 2023, Volume: 12 Issue: 3, 1464 - 1473, 26.09.2023
https://doi.org/10.37989/gumussagbil.1226210
This article was retracted on December 26, 2023. https://dergipark.org.tr/en/pub/gumussagbil/issue/81745/1376344

Abstract

Autism spectrum disorder (ASD) is a compound brain development disorder of uncertain etiology and pathophysiology. In addition to environmental factors, genetic factors also affect the pathophysiology of ASD. Propionic acid (PA), which is used as a food additive and drug, can affect the genetic processes of brain development through the modulation of molecular pathways. Propionic acid causes the formation of ASD by causing mTOR/Gskβ, cytokine imbalance and disruption of developmental molecular pathways in the prenatal and neonatal period. This review was made to investigate the possible effects of PA.

References

  • 1. Livingston, L.A. and Happé, F. (2017). “Conceptualising Compensation İn Neurodevelopmental Disorders: Reflections From Autism Spectrum Disorder”. Neurosci Biobehav Reviews, 80, 729-742. https://doi.org/10.1016/j.neubiorev.2017.06.005
  • 2. Simpson, R.L. (2005). “Evidence-Based Practices and Students With Autism Spectrum Disorders”. Focus on Autism and Other Developmental Disabilities, 20, 140-149. https://doi.org/10.1177/10883576050200030201
  • 3. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association (2013).
  • 4. Rahi, S, Gupta, R, Sharma, A. and Mehan, S. (2021). “Smo-Shh Signaling Activator Purmorphamine Ameliorates Neurobehavioral, Molecular, And Morphological Alterations in An Intracerebroventricular Propionic Acid-Induced Experimental Model of Autism”. Human and Experimental Toxicology, 40, 1880-1898. https://doi.org/10.1177/09603271211013456
  • 5. Amaral, D.G, Schumann, C.M. and Nordahl, C.W. (2008) “Neuroanatomy of Autism”. Trends in Neurosciences, 31, 137-145. https://doi.org/10.1016/j.tins.2007.12.005
  • 6. Lee, J.M, Kyeong, S, Kim, E. and Cheon, K.A. (2016). “Abnormalities of Inter- and Intra-Hemispheric Functional Connectivity in Autism Spectrum Disorders: A Study Using The Autism Brain Imaging Data Exchange Database”. Front Neuroscience. 10, https://doi.org/10.3389/fnins.2016.00191
  • 7. Maenner, M.J, Shaw, K.A, Bakian, A.V, Bilder, D.A, Durkin, M.S, Esler, A, Furnier, S.M, Hallas, L, Hall-Lande, J, Hudson, A, Hughes, M.M, Patrick, M, Pierce, K, Poynter, J.N, Salinas, A, Shenouda, J, Vehorn, A, Warren, Z, Constantino, J.N, DiRienzo, M, Fitzgerald, R.T, Grzybowski, A, Spivey, M.H, Pettygrove, S, Zahorodny, W, Ali, A, Andrews, J.G, Baroud, T, Gutierrez, J, Hewitt, A, Lee, L.C, Lopez, M, Mancilla, K.C, McArthur, D, Schwenk, Y.D, Washington, A, Williams, S. and Cogswell, M.E. (2021). “Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network”. 11 Sites, United States, 2018. MMWR Surveillance Summaries. 70, 1-16. https://doi.org/10.15585/MMWR.SS7011A1
  • 8. Dantzer, R. (2009). “Cytokine, Sickness Behavior, and Depression”. Immunology and Allergy Clinics of North America. 29, 247-264. https://doi.org/10.1016/j.iac.2009.02.002
  • 9. Ding, H.T, Taur, Y. and Walkup, J.T. (2017). “Gut Microbiota and Autism: Key Concepts and Findings”. Journal of Autism and Developmental Disorders. 47, 480-489. https://doi.org/10.1007/s10803-016-2960-9
  • 10. Macfabe, D, Caın, D, Rodrıguezcapote, K, Franklın, A, Hoffman, J, Boon, F, Taylor, A, Kavalıers, M. and Ossenkopp, K. (2007). “Neurobiological Effects of Intraventricular Propionic Acid In Rats: Possible Role of Short Chain Fatty Acids On The Pathogenesis And Characteristics of Autism Spectrum Disorders”. Behavioural Brain Research, 176, 149-169. https://doi.org/10.1016/j.bbr.2006.07.025
  • 11. El-Ansary, A, Bacha, A, Bjørklund, G, Al-Orf, N, Bhat, R.S, Moubayed, N. and Abed, K. (2018). “Probiotic Treatment Reduces The Autistic-Like Excitation/Inhibition Imbalance in Juvenile Hamsters Induced By Orally Administered Propionic Acid and Clindamycin”. Metabolic Brain Disease, 33, 1155-1164. https://doi.org/10.1007/s11011-018-0212-8
  • 12. MacFabe, D.F. (2015). “Enteric Short-Chain Fatty Acids: Microbial Messengers of Metabolism, Mitochondria, and Mind: Implications in Autism Spectrum Disorders”. Microbial Ecology in Health and Disease, 26, https://doi.org/10.3402/mehd.v26.28177.
  • 13. Masi, A, Glozier, N, Dale, R. and Guastella, A.J. (2017). “The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder”. Neuroscience Bulletin, 33, 194-204. https://doi.org/10.1007/s12264-017-0103-8
  • 14. Gonzalez-Garcia, R.A, McCubbin, T, Navone, L, Stowers, C, Nielsen, L.K, Marcellin, E. (2017). “Microbial propionic acid production”. Fermentation, 3(2), 21.
  • 15. Atamanchemical. (2022). “Calcium Propionate”. https://www.atamanchemicals.com/calcium-propionate_u25033/ (16.11.2022).
  • 16. Kalyoncu, F. (2008). “Gıda Sanayinde Sıklıkla Kullanılan Antifungal Katkı Maddeleri”. e-Journal of New World Sciences Academy, 3, 3, 462 – 426.
  • 17. Lobzhanidze, G, Lordkipanidze, T, Zhvania, M, Japaridze, N, MacFabe, D.F, Pochkidze, N, Gasimov, E. and Rzaev, F. (2019). “Effect of Propionic Acid on The Morphology of The Amygdala In Adolescent Male Rats and Their Behavior”. Micron, 125, 102732. https://doi.org/10.1016/j.micron.2019.102732
  • 18. Ammar, E.M. and Philippidis, G.P. (2021). “Fermentative Production of Propionic Acid: Prospects and Limitations of Microorganisms and Substrates”. Applied Microbiology and Biotechnology, 105, 6199-6213. https://doi.org/10.1007/s00253-021-11499-1
  • 19. Mepham, J.R, Boon, F.H, Foley, K.A, Cain, D.P, MacFabe, D.F. and Ossenkopp, K.P. (2019). “Impaired Spatial Cognition in Adult Rats Treated with Multiple Intracerebroventricular (ICV) Infusions of the Enteric Bacterial Metabolite, Propionic Acid, and Return to Baseline After 1 Week of No Treatment: Contribution to a Rodent Model of OSB”. Neurotoxicity Research, 35, 823-837. https://doi.org/10.1007/s12640-019-0002-z
  • 20. Brock, M. and Buckel, W. (2004). “On The Mechanism of Action of The Antifungal Agent Propionate”. European Journal of Biochemistry, 271, 3227-3241. https://doi.org/10.1111/j.1432-1033.2004.04255.x
  • 21. Witters P, Debbold, E, Crivelly, K, Vande Kerckhove, K, Corthouts, K, Debbold, B, Andersson, H, Vannieuwenborg, L, Geuens, S, Baumgartner, M, Kozicz, M, Settles, L, Morava, E. (2016). “Autism in Patients With Propionic Acidemia”. Mol Genet Metab, 119(4), 317-321. doi: 10.1016/j.ymgme.2016.10.009
  • 22. Erten, F. (2021). “Lycopene Ameliorates Propionic Acid‐Induced Autism Spectrum Disorders by Inhibiting Inflammation and Oxidative Stress In Rats”. Journal of Food Biochemistry, 45. https://doi.org/10.1111/jfbc.13922
  • 23. Al-Ghamdi, M, Al-Ayadhi, L. and El-Ansary, A. (2014). Selected Biomarkers As Predictive Tools in Testing Efficacy of Melatonin and Coenzyme Q On Propionic Acid- Induced Neurotoxicity In Rodent Model Of Autism. BMC Neuroscience, 15, 34. https://doi.org/10.1186/1471-2202-15-34
  • 24. Khalil, S.R, Abd-Elhakim, Y.M, Selim, M.E. and Al-Ayadhi, L.Y. (2015). “Apitoxin Protects Rat Pups Brain From Propionic Acid-Induced Oxidative Stress: The Expression Pattern of Bcl-2 and Caspase-3 Apoptotic Genes”. Neurotoxicology, 49, 121-131. https://doi.org/10.1016/j.neuro.2015.05.011
  • 25. Al-Salem, H.S, Bhat, R.S, Al-Ayadhi, L. and El-Ansary, A. (2016). “Therapeutic Potency of Bee Pollen Against Biochemical Autistic Features Induced Through Acute and Sub-Acute Neurotoxicity of Orally Administered Propionic Acid”. BMC Complementary Medicine and Therapies, 16, 120. https://doi.org/10.1186/s12906-016-1099-8
  • 26. Bhandari, R. and Kuhad, A. (2017). “Resveratrol Suppresses Neuroinflammation in The Experimental Paradigm of Autism Spectrum Disorders”. Neurochemistry International, 103, 8-23. https://doi.org/10.1016/j.neuint.2016.12.012
  • 27. Choi, J, Lee, S, Won, J, Jin, Y, Hong, Y, Hur, T.Y, Kim, J.H, Lee, S.R. and Hong, Y. (2018). “Pathophysiological and Neurobehavioral Characteristics of A Propionic Acid-Mediated Autism-Like Rat Model”. PLoS One, 13, e0192925. https://doi.org/10.1371/journal.pone.0192925
  • 28. Alfawaz, H, Bhat, R.S, Al-Mutairi, M, Alnakhli, O.M, Al-Dbass, A, AlOnazi, M, Al-Mrshoud, M, Hasan, I.H. and El-Ansary, A. (2018). “Comparative Study on The Independent and Combined Effects of Omega-3 and Vitamin B12 on Phospholipids and Phospholipase A2 As Phospholipid Hydrolyzing Enzymes in PPA-Treated Rats As a Model for Autistic Traits”. Lipids in Health and Disease, 17, 205. https://doi.org/10.1186/s12944-018-0850-1
  • 29. Lobzhanidze, G, Lordkipanidze, T, Zhvania, M, Japaridze, N, MacFabe, D.F, Pochkidze, N, Gasimov, E. and Rzaev, F. (2019). “Effect of Propionic Acid on The Morphology of The Amygdala in Adolescent Male Rats and Their Behavior”. Micron, 125, 102732. https://doi.org/10.1016/j.micron.2019.102732
  • 30. Hospital, I.H. and Sciences, M. (2019). “Accepted Manuscript Accepted Manuscript (Uncorrected Proof )”. 1-21.
  • 31. Aabed, K, Bhat, R.S, Al-Dbass, A, Moubayed, N, Algahtani, N, Merghani, N.M, Alanazi, A, Zayed, N. and El-Ansary, A. (2019). “Bee Pollen and Propolis Improve Neuroinflammation and Dysbiosis Induced by Propionic Acid, A Short Chain Fatty Acid In A Rodent Model of Autism”. Lipids in Health and Disease, 18, 200. https://doi.org/10.1186/s12944-019-1150-0
  • 32. Mirza, R. and Sharma, B. (2019). “A Selective Peroxisome Proliferator-Activated Receptor-Γ Agonist Benefited Propionic Acid Induced Autism-Like Behavioral Phenotypes in Rats By Attenuation of Neuroinflammation and Oxidative Stress”. Chemico-Biological Interactions, 311, 108758. https://doi.org/10.1016/j.cbi.2019.108758
  • 33. Al-Suwailem, E, Abdi, S, Bhat, R.S. and El-Ansary, A. (2019). “Glutamate Signaling Defects in Propionic Acid Orally Administered to Juvenile Rats as an Experimental Animal Model of Autism”. Neurochemical Journal, 13, 90-98. https://doi.org/10.1134/S1819712419010021
  • 34. Lobzhanidze, G, Japaridze, N, Lordkipanidze, T, Rzayev, F, MacFabe, D. and Zhvania, M. (2020). “Behavioural and Brain Ultrastructural Changes Following The Systemic Administration of Propionic Acid in Adolescent Male Rats Further Development of a Rodent Model of Autism”. International Journal of Developmental Neuroscience, 80, 139-156. https://doi.org/10.1002/jdn.10011
  • 36. Tiwari, A, Khera, R, Rahi, S, Mehan, S, Makeen, H.A, Khormi, Y.H, Rehman, M.U. and Khan, A. (2021). “Neuroprotective Effect of Α-Mangostin in Ameliorating Propionic Acid-Induced Experimental Model of Autism in Wistar Rats”. Brain Sciences, 11, 288. https://doi.org/10.3390/brainsci11030288
  • 37. Jiji, K.N. and Muralidharan, P. (2022). “Evaluation of The Protective Effect of Clitoria Ternatea L. Against Propionic Acid Induced Autistic Spectrum Disorders in Rat Model”. Bulletin of the National Research Centre, 46, 71. https://doi.org/10.1186/s42269-022-00738-8
  • 38. Solmaz, V. (2022). “Lowering Propionic Acid Levels by Regulating Gut Microbiota with Ursodeoxycholic Acid Appears to Regress Autism Symptoms: An Animal Study”. https://doi.org/https://doi.org/10.21203/rs.3.rs-1963818/v1
  • 39. Alonazi, M, ben Bacha, A, al Suhaibani, A, Almnaizel, A.T, Aloudah, H.S. and El-Ansary, A. (2022). “Psychobiotics Improve Propionic Acid-Induced Neuroinflammation in Juvenile Rats, Rodent Model of Autism”. Translational Neuroscience, 13, 292-300. https://doi.org/10.1515/tnsci-2022-0226
  • 40. Aljumaiah, M.M, Alonazi, M.A, Al-Dbass, A.M, Almnaizel, A.T, Alahmed, M, Soliman, D.A. and El-Ansary, A. (2022). “Association of Maternal Diabetes and Autism Spectrum Disorders in Offspring: a Study in a Rodent Model of Autism”. Journal of Molecular Neuroscience, 72, 349-358. https://doi.org/10.1007/s12031-021-01912-9
  • 41. Alonazi, M, ben Bacha, A, al Suhaibani, A, Almnaizel, A.T, Aloudah, H.S. and El-Ansary, A. (2022). “Psychobiotics Improve Propionic Acid-Induced Neuroinflammation In Juvenile Rats, Rodent Model of Autism”. Translational Neuroscience, 13, 292-300. https://doi.org/10.1515/tnsci-2022-0226
  • 42. Sahin, K, Orhan, C, Karatoprak, S, Tuzcu, M, Deeh, P.B.D, Ozercan, I.H, Sahin, N, Bozoglan, M.Y, Sylla, S, Ojalvo, S.P. and Komorowski, J.R. (2022). “Therapeutic Effects of a Novel Form of Biotin on Propionic Acid-Induced Autistic Features in Rats”. Nutrients, 14, 1280. https://doi.org/10.3390/nu14061280
  • 43. Sharma, A, Bhalla, S. and Mehan, S. (2022). “PI3K/AKT/Mtor Signalling Inhibitor Chrysophanol Ameliorates Neurobehavioural and Neurochemical Defects in Propionic Acid-Induced Experimental Model of Autism in Adult Rats”. Metabolic Brain Disease, 37, 1909-1929. https://doi.org/10.1007/s11011-022-01026-0
  • 44. Sahin, K, Orhan, C, Karatoprak, S, Tuzcu, M, Deeh, P.B.D, Ozercan, I.H, Sahin, N, Bozoglan, M.Y, Sylla, S, Ojalvo, S.P. and Komorowski, J.R. (2022). “Therapeutic Effects of a Novel Form of Biotin on Propionic Acid-Induced Autistic Features in Rats”. Nutrients, 14, 1280. https://doi.org/10.3390/nu14061280
  • 45. Rojas, D.C. (2014). “The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. Journal of Neural Transmission, 121, 891-905. https://doi.org/10.1007/s00702-014-1216-0
  • 46. Ciranna, L. (2006). “Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology”. Curr Neuropharmacol, 4, 101–114. https://doi.org/10.2174/157015906776359540
  • 47. Jonnakuty, C. and Gragnoli, C. (2008). “What Do We Know About Serotonin?”. Journal of Cellular Physiology, 217, 301-306. https://doi.org/10.1002/jcp.21533
  • 48. Folk, G.E. and Long, J.P. (1988). “Serotonin as a neurotransmitter: A review. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology”. 91, 251-257. https://doi.org/10.1016/0742-8413(88)90193-4
  • 49. Schain, R.J. and Freedman, D.X. (1961). “Studies on 5-Hydroxyindole Metabolism in Autistic and Other Mentally Retarded Children”. The Journal of Pediatrics, 58, 315-320. https://doi.org/10.1016/S0022-3476(61)80261-8
  • 50. Berke, J.D. (2018). “What does dopamine mean?”. Nature Neuroscience, 21, 787-793. https://doi.org/10.1038/s41593-018-0152-y
  • 51. Pavăl, D. (2017). “A Dopamine Hypothesis of Autism Spectrum Disorder”. Developmental Neuroscience, 39, 355-360. https://doi.org/10.1159/000478725
  • 52. Haber, S.N. (2014). “The Place of Dopamine in The Cortico-Basal Ganglia Circuit”. Neuroscience. 282, 248-257. https://doi.org/10.1016/j.neuroscience.2014.10.008
  • 53. Vargas, D.L, Nascimbene, C, Krishnan, C, Zimmerman, A.W. and Pardo, C.A. (2005). “Neuroglial Activation and Neuroinflammation in The Brain of Patients With Autism”. Annals of Neurology, 57, 67-81. https://doi.org/10.1002/ana.20315
  • 54. Morgan, J.T, Chana, G, Pardo, C.A, Achim, C, Semendeferi, K, Buckwalter, J, Courchesne, E. and Everall, I.P. (2010). “Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism”. Biological Psychiatry, 68, 368-376. https://doi.org/10.1016/j.biopsych.2010.05.024
  • 55. Milani, C, Duranti, S, Bottacini, F, Casey, E, Turroni, F, Mahony, J, Belzer, C, Delgado Palacio, S, Arboleya Montes, S, Mancabelli, L, Lugli, G.A, Rodriguez, J.M, Bode, L, de Vos, W, Gueimonde, M, Margolles, A, van Sinderen, D. and Ventura, M. (2017). “The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota”. Microbiology and Molecular Biology Reviews, 81. https://doi.org/10.1128/MMBR.00036-17
  • 56. Fond, G, Boukouaci, W, Chevalier, G, Regnault, A, Eberl, G, Hamdani, N, Dickerson, F, Macgregor, A, Boyer, L, Dargel, A, Oliveira, J, Tamouza, R. and Leboyer, M. (2015). “The “Psychomicrobiotic”: Targeting Microbiota in Major Psychiatric Disorders: A Systematic Review”. Pathologie Biologie, 63, 35-42. https://doi.org/10.1016/j.patbio.2014.10.003
  • 57. Wang, Y. and Kasper, L.H. (2014). “The Role of Microbiome in Central Nervous System Disorders”. Brain, Behavior, and Immunity, 38, 1-12. https://doi.org/10.1016/j.bbi.2013.12.015
  • 58. Claustrat, B. and Leston, J. (2014). “Melatonin: Physiological Effects in Humans”. Neurochirurgie, 61, 77-84. https://doi.org/10.1016/j.neuchi.2015.03.002
  • 59. Reiter, R.J, Tan, D.X. and Galano, A. (2014). “Melatonin: Exceeding Expectations”. Physiology, 29, 325-333. https://doi.org/10.1152/physiol.00011.2014
  • 60. Richdale, A.L. and Prior, M.R. (1995). “The Sleep/Wake Rhythm in Children With Autism”. European Child & Adolescent Psychiatry, 4, 175-186. https://doi.org/10.1007/BF01980456

Retraction: Propiyonik Asit ve Otizm Spektrum Bozukluğu İlişkisi

Year 2023, Volume: 12 Issue: 3, 1464 - 1473, 26.09.2023
https://doi.org/10.37989/gumussagbil.1226210
This article was retracted on December 26, 2023. https://dergipark.org.tr/en/pub/gumussagbil/issue/81745/1376344

Abstract

Otizm spektrum bozukluğu (OSB), etiyolojisi ve patofizyolojisi belirsiz olan bileşik bir beyin gelişimi bozukluğudur. OSB patofizyolojisinde çevresel faktörlerin yanında genetik faktörler de etki etmektedir. Gıda katkı maddesi ve ilaç olarak kullanılmakta olan propiyonik asit (PA) moleküler yolların modülasyonu yoluyla beyin gelişiminin genetik süreçlerini etkileyebilmektedir. Propiyonik asit, prenatal ve neonatal dönemde mTOR/Gskβ, sitokin dengesizliğine ve gelişimsel moleküler yollarının bozulmasına neden olarak OSB’nin oluşmasına neden olur. Bu derleme, PA’nın olası etkilerini araştırmak amacıyla yapılmıştır.

References

  • 1. Livingston, L.A. and Happé, F. (2017). “Conceptualising Compensation İn Neurodevelopmental Disorders: Reflections From Autism Spectrum Disorder”. Neurosci Biobehav Reviews, 80, 729-742. https://doi.org/10.1016/j.neubiorev.2017.06.005
  • 2. Simpson, R.L. (2005). “Evidence-Based Practices and Students With Autism Spectrum Disorders”. Focus on Autism and Other Developmental Disabilities, 20, 140-149. https://doi.org/10.1177/10883576050200030201
  • 3. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association (2013).
  • 4. Rahi, S, Gupta, R, Sharma, A. and Mehan, S. (2021). “Smo-Shh Signaling Activator Purmorphamine Ameliorates Neurobehavioral, Molecular, And Morphological Alterations in An Intracerebroventricular Propionic Acid-Induced Experimental Model of Autism”. Human and Experimental Toxicology, 40, 1880-1898. https://doi.org/10.1177/09603271211013456
  • 5. Amaral, D.G, Schumann, C.M. and Nordahl, C.W. (2008) “Neuroanatomy of Autism”. Trends in Neurosciences, 31, 137-145. https://doi.org/10.1016/j.tins.2007.12.005
  • 6. Lee, J.M, Kyeong, S, Kim, E. and Cheon, K.A. (2016). “Abnormalities of Inter- and Intra-Hemispheric Functional Connectivity in Autism Spectrum Disorders: A Study Using The Autism Brain Imaging Data Exchange Database”. Front Neuroscience. 10, https://doi.org/10.3389/fnins.2016.00191
  • 7. Maenner, M.J, Shaw, K.A, Bakian, A.V, Bilder, D.A, Durkin, M.S, Esler, A, Furnier, S.M, Hallas, L, Hall-Lande, J, Hudson, A, Hughes, M.M, Patrick, M, Pierce, K, Poynter, J.N, Salinas, A, Shenouda, J, Vehorn, A, Warren, Z, Constantino, J.N, DiRienzo, M, Fitzgerald, R.T, Grzybowski, A, Spivey, M.H, Pettygrove, S, Zahorodny, W, Ali, A, Andrews, J.G, Baroud, T, Gutierrez, J, Hewitt, A, Lee, L.C, Lopez, M, Mancilla, K.C, McArthur, D, Schwenk, Y.D, Washington, A, Williams, S. and Cogswell, M.E. (2021). “Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network”. 11 Sites, United States, 2018. MMWR Surveillance Summaries. 70, 1-16. https://doi.org/10.15585/MMWR.SS7011A1
  • 8. Dantzer, R. (2009). “Cytokine, Sickness Behavior, and Depression”. Immunology and Allergy Clinics of North America. 29, 247-264. https://doi.org/10.1016/j.iac.2009.02.002
  • 9. Ding, H.T, Taur, Y. and Walkup, J.T. (2017). “Gut Microbiota and Autism: Key Concepts and Findings”. Journal of Autism and Developmental Disorders. 47, 480-489. https://doi.org/10.1007/s10803-016-2960-9
  • 10. Macfabe, D, Caın, D, Rodrıguezcapote, K, Franklın, A, Hoffman, J, Boon, F, Taylor, A, Kavalıers, M. and Ossenkopp, K. (2007). “Neurobiological Effects of Intraventricular Propionic Acid In Rats: Possible Role of Short Chain Fatty Acids On The Pathogenesis And Characteristics of Autism Spectrum Disorders”. Behavioural Brain Research, 176, 149-169. https://doi.org/10.1016/j.bbr.2006.07.025
  • 11. El-Ansary, A, Bacha, A, Bjørklund, G, Al-Orf, N, Bhat, R.S, Moubayed, N. and Abed, K. (2018). “Probiotic Treatment Reduces The Autistic-Like Excitation/Inhibition Imbalance in Juvenile Hamsters Induced By Orally Administered Propionic Acid and Clindamycin”. Metabolic Brain Disease, 33, 1155-1164. https://doi.org/10.1007/s11011-018-0212-8
  • 12. MacFabe, D.F. (2015). “Enteric Short-Chain Fatty Acids: Microbial Messengers of Metabolism, Mitochondria, and Mind: Implications in Autism Spectrum Disorders”. Microbial Ecology in Health and Disease, 26, https://doi.org/10.3402/mehd.v26.28177.
  • 13. Masi, A, Glozier, N, Dale, R. and Guastella, A.J. (2017). “The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder”. Neuroscience Bulletin, 33, 194-204. https://doi.org/10.1007/s12264-017-0103-8
  • 14. Gonzalez-Garcia, R.A, McCubbin, T, Navone, L, Stowers, C, Nielsen, L.K, Marcellin, E. (2017). “Microbial propionic acid production”. Fermentation, 3(2), 21.
  • 15. Atamanchemical. (2022). “Calcium Propionate”. https://www.atamanchemicals.com/calcium-propionate_u25033/ (16.11.2022).
  • 16. Kalyoncu, F. (2008). “Gıda Sanayinde Sıklıkla Kullanılan Antifungal Katkı Maddeleri”. e-Journal of New World Sciences Academy, 3, 3, 462 – 426.
  • 17. Lobzhanidze, G, Lordkipanidze, T, Zhvania, M, Japaridze, N, MacFabe, D.F, Pochkidze, N, Gasimov, E. and Rzaev, F. (2019). “Effect of Propionic Acid on The Morphology of The Amygdala In Adolescent Male Rats and Their Behavior”. Micron, 125, 102732. https://doi.org/10.1016/j.micron.2019.102732
  • 18. Ammar, E.M. and Philippidis, G.P. (2021). “Fermentative Production of Propionic Acid: Prospects and Limitations of Microorganisms and Substrates”. Applied Microbiology and Biotechnology, 105, 6199-6213. https://doi.org/10.1007/s00253-021-11499-1
  • 19. Mepham, J.R, Boon, F.H, Foley, K.A, Cain, D.P, MacFabe, D.F. and Ossenkopp, K.P. (2019). “Impaired Spatial Cognition in Adult Rats Treated with Multiple Intracerebroventricular (ICV) Infusions of the Enteric Bacterial Metabolite, Propionic Acid, and Return to Baseline After 1 Week of No Treatment: Contribution to a Rodent Model of OSB”. Neurotoxicity Research, 35, 823-837. https://doi.org/10.1007/s12640-019-0002-z
  • 20. Brock, M. and Buckel, W. (2004). “On The Mechanism of Action of The Antifungal Agent Propionate”. European Journal of Biochemistry, 271, 3227-3241. https://doi.org/10.1111/j.1432-1033.2004.04255.x
  • 21. Witters P, Debbold, E, Crivelly, K, Vande Kerckhove, K, Corthouts, K, Debbold, B, Andersson, H, Vannieuwenborg, L, Geuens, S, Baumgartner, M, Kozicz, M, Settles, L, Morava, E. (2016). “Autism in Patients With Propionic Acidemia”. Mol Genet Metab, 119(4), 317-321. doi: 10.1016/j.ymgme.2016.10.009
  • 22. Erten, F. (2021). “Lycopene Ameliorates Propionic Acid‐Induced Autism Spectrum Disorders by Inhibiting Inflammation and Oxidative Stress In Rats”. Journal of Food Biochemistry, 45. https://doi.org/10.1111/jfbc.13922
  • 23. Al-Ghamdi, M, Al-Ayadhi, L. and El-Ansary, A. (2014). Selected Biomarkers As Predictive Tools in Testing Efficacy of Melatonin and Coenzyme Q On Propionic Acid- Induced Neurotoxicity In Rodent Model Of Autism. BMC Neuroscience, 15, 34. https://doi.org/10.1186/1471-2202-15-34
  • 24. Khalil, S.R, Abd-Elhakim, Y.M, Selim, M.E. and Al-Ayadhi, L.Y. (2015). “Apitoxin Protects Rat Pups Brain From Propionic Acid-Induced Oxidative Stress: The Expression Pattern of Bcl-2 and Caspase-3 Apoptotic Genes”. Neurotoxicology, 49, 121-131. https://doi.org/10.1016/j.neuro.2015.05.011
  • 25. Al-Salem, H.S, Bhat, R.S, Al-Ayadhi, L. and El-Ansary, A. (2016). “Therapeutic Potency of Bee Pollen Against Biochemical Autistic Features Induced Through Acute and Sub-Acute Neurotoxicity of Orally Administered Propionic Acid”. BMC Complementary Medicine and Therapies, 16, 120. https://doi.org/10.1186/s12906-016-1099-8
  • 26. Bhandari, R. and Kuhad, A. (2017). “Resveratrol Suppresses Neuroinflammation in The Experimental Paradigm of Autism Spectrum Disorders”. Neurochemistry International, 103, 8-23. https://doi.org/10.1016/j.neuint.2016.12.012
  • 27. Choi, J, Lee, S, Won, J, Jin, Y, Hong, Y, Hur, T.Y, Kim, J.H, Lee, S.R. and Hong, Y. (2018). “Pathophysiological and Neurobehavioral Characteristics of A Propionic Acid-Mediated Autism-Like Rat Model”. PLoS One, 13, e0192925. https://doi.org/10.1371/journal.pone.0192925
  • 28. Alfawaz, H, Bhat, R.S, Al-Mutairi, M, Alnakhli, O.M, Al-Dbass, A, AlOnazi, M, Al-Mrshoud, M, Hasan, I.H. and El-Ansary, A. (2018). “Comparative Study on The Independent and Combined Effects of Omega-3 and Vitamin B12 on Phospholipids and Phospholipase A2 As Phospholipid Hydrolyzing Enzymes in PPA-Treated Rats As a Model for Autistic Traits”. Lipids in Health and Disease, 17, 205. https://doi.org/10.1186/s12944-018-0850-1
  • 29. Lobzhanidze, G, Lordkipanidze, T, Zhvania, M, Japaridze, N, MacFabe, D.F, Pochkidze, N, Gasimov, E. and Rzaev, F. (2019). “Effect of Propionic Acid on The Morphology of The Amygdala in Adolescent Male Rats and Their Behavior”. Micron, 125, 102732. https://doi.org/10.1016/j.micron.2019.102732
  • 30. Hospital, I.H. and Sciences, M. (2019). “Accepted Manuscript Accepted Manuscript (Uncorrected Proof )”. 1-21.
  • 31. Aabed, K, Bhat, R.S, Al-Dbass, A, Moubayed, N, Algahtani, N, Merghani, N.M, Alanazi, A, Zayed, N. and El-Ansary, A. (2019). “Bee Pollen and Propolis Improve Neuroinflammation and Dysbiosis Induced by Propionic Acid, A Short Chain Fatty Acid In A Rodent Model of Autism”. Lipids in Health and Disease, 18, 200. https://doi.org/10.1186/s12944-019-1150-0
  • 32. Mirza, R. and Sharma, B. (2019). “A Selective Peroxisome Proliferator-Activated Receptor-Γ Agonist Benefited Propionic Acid Induced Autism-Like Behavioral Phenotypes in Rats By Attenuation of Neuroinflammation and Oxidative Stress”. Chemico-Biological Interactions, 311, 108758. https://doi.org/10.1016/j.cbi.2019.108758
  • 33. Al-Suwailem, E, Abdi, S, Bhat, R.S. and El-Ansary, A. (2019). “Glutamate Signaling Defects in Propionic Acid Orally Administered to Juvenile Rats as an Experimental Animal Model of Autism”. Neurochemical Journal, 13, 90-98. https://doi.org/10.1134/S1819712419010021
  • 34. Lobzhanidze, G, Japaridze, N, Lordkipanidze, T, Rzayev, F, MacFabe, D. and Zhvania, M. (2020). “Behavioural and Brain Ultrastructural Changes Following The Systemic Administration of Propionic Acid in Adolescent Male Rats Further Development of a Rodent Model of Autism”. International Journal of Developmental Neuroscience, 80, 139-156. https://doi.org/10.1002/jdn.10011
  • 36. Tiwari, A, Khera, R, Rahi, S, Mehan, S, Makeen, H.A, Khormi, Y.H, Rehman, M.U. and Khan, A. (2021). “Neuroprotective Effect of Α-Mangostin in Ameliorating Propionic Acid-Induced Experimental Model of Autism in Wistar Rats”. Brain Sciences, 11, 288. https://doi.org/10.3390/brainsci11030288
  • 37. Jiji, K.N. and Muralidharan, P. (2022). “Evaluation of The Protective Effect of Clitoria Ternatea L. Against Propionic Acid Induced Autistic Spectrum Disorders in Rat Model”. Bulletin of the National Research Centre, 46, 71. https://doi.org/10.1186/s42269-022-00738-8
  • 38. Solmaz, V. (2022). “Lowering Propionic Acid Levels by Regulating Gut Microbiota with Ursodeoxycholic Acid Appears to Regress Autism Symptoms: An Animal Study”. https://doi.org/https://doi.org/10.21203/rs.3.rs-1963818/v1
  • 39. Alonazi, M, ben Bacha, A, al Suhaibani, A, Almnaizel, A.T, Aloudah, H.S. and El-Ansary, A. (2022). “Psychobiotics Improve Propionic Acid-Induced Neuroinflammation in Juvenile Rats, Rodent Model of Autism”. Translational Neuroscience, 13, 292-300. https://doi.org/10.1515/tnsci-2022-0226
  • 40. Aljumaiah, M.M, Alonazi, M.A, Al-Dbass, A.M, Almnaizel, A.T, Alahmed, M, Soliman, D.A. and El-Ansary, A. (2022). “Association of Maternal Diabetes and Autism Spectrum Disorders in Offspring: a Study in a Rodent Model of Autism”. Journal of Molecular Neuroscience, 72, 349-358. https://doi.org/10.1007/s12031-021-01912-9
  • 41. Alonazi, M, ben Bacha, A, al Suhaibani, A, Almnaizel, A.T, Aloudah, H.S. and El-Ansary, A. (2022). “Psychobiotics Improve Propionic Acid-Induced Neuroinflammation In Juvenile Rats, Rodent Model of Autism”. Translational Neuroscience, 13, 292-300. https://doi.org/10.1515/tnsci-2022-0226
  • 42. Sahin, K, Orhan, C, Karatoprak, S, Tuzcu, M, Deeh, P.B.D, Ozercan, I.H, Sahin, N, Bozoglan, M.Y, Sylla, S, Ojalvo, S.P. and Komorowski, J.R. (2022). “Therapeutic Effects of a Novel Form of Biotin on Propionic Acid-Induced Autistic Features in Rats”. Nutrients, 14, 1280. https://doi.org/10.3390/nu14061280
  • 43. Sharma, A, Bhalla, S. and Mehan, S. (2022). “PI3K/AKT/Mtor Signalling Inhibitor Chrysophanol Ameliorates Neurobehavioural and Neurochemical Defects in Propionic Acid-Induced Experimental Model of Autism in Adult Rats”. Metabolic Brain Disease, 37, 1909-1929. https://doi.org/10.1007/s11011-022-01026-0
  • 44. Sahin, K, Orhan, C, Karatoprak, S, Tuzcu, M, Deeh, P.B.D, Ozercan, I.H, Sahin, N, Bozoglan, M.Y, Sylla, S, Ojalvo, S.P. and Komorowski, J.R. (2022). “Therapeutic Effects of a Novel Form of Biotin on Propionic Acid-Induced Autistic Features in Rats”. Nutrients, 14, 1280. https://doi.org/10.3390/nu14061280
  • 45. Rojas, D.C. (2014). “The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. Journal of Neural Transmission, 121, 891-905. https://doi.org/10.1007/s00702-014-1216-0
  • 46. Ciranna, L. (2006). “Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology”. Curr Neuropharmacol, 4, 101–114. https://doi.org/10.2174/157015906776359540
  • 47. Jonnakuty, C. and Gragnoli, C. (2008). “What Do We Know About Serotonin?”. Journal of Cellular Physiology, 217, 301-306. https://doi.org/10.1002/jcp.21533
  • 48. Folk, G.E. and Long, J.P. (1988). “Serotonin as a neurotransmitter: A review. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology”. 91, 251-257. https://doi.org/10.1016/0742-8413(88)90193-4
  • 49. Schain, R.J. and Freedman, D.X. (1961). “Studies on 5-Hydroxyindole Metabolism in Autistic and Other Mentally Retarded Children”. The Journal of Pediatrics, 58, 315-320. https://doi.org/10.1016/S0022-3476(61)80261-8
  • 50. Berke, J.D. (2018). “What does dopamine mean?”. Nature Neuroscience, 21, 787-793. https://doi.org/10.1038/s41593-018-0152-y
  • 51. Pavăl, D. (2017). “A Dopamine Hypothesis of Autism Spectrum Disorder”. Developmental Neuroscience, 39, 355-360. https://doi.org/10.1159/000478725
  • 52. Haber, S.N. (2014). “The Place of Dopamine in The Cortico-Basal Ganglia Circuit”. Neuroscience. 282, 248-257. https://doi.org/10.1016/j.neuroscience.2014.10.008
  • 53. Vargas, D.L, Nascimbene, C, Krishnan, C, Zimmerman, A.W. and Pardo, C.A. (2005). “Neuroglial Activation and Neuroinflammation in The Brain of Patients With Autism”. Annals of Neurology, 57, 67-81. https://doi.org/10.1002/ana.20315
  • 54. Morgan, J.T, Chana, G, Pardo, C.A, Achim, C, Semendeferi, K, Buckwalter, J, Courchesne, E. and Everall, I.P. (2010). “Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism”. Biological Psychiatry, 68, 368-376. https://doi.org/10.1016/j.biopsych.2010.05.024
  • 55. Milani, C, Duranti, S, Bottacini, F, Casey, E, Turroni, F, Mahony, J, Belzer, C, Delgado Palacio, S, Arboleya Montes, S, Mancabelli, L, Lugli, G.A, Rodriguez, J.M, Bode, L, de Vos, W, Gueimonde, M, Margolles, A, van Sinderen, D. and Ventura, M. (2017). “The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota”. Microbiology and Molecular Biology Reviews, 81. https://doi.org/10.1128/MMBR.00036-17
  • 56. Fond, G, Boukouaci, W, Chevalier, G, Regnault, A, Eberl, G, Hamdani, N, Dickerson, F, Macgregor, A, Boyer, L, Dargel, A, Oliveira, J, Tamouza, R. and Leboyer, M. (2015). “The “Psychomicrobiotic”: Targeting Microbiota in Major Psychiatric Disorders: A Systematic Review”. Pathologie Biologie, 63, 35-42. https://doi.org/10.1016/j.patbio.2014.10.003
  • 57. Wang, Y. and Kasper, L.H. (2014). “The Role of Microbiome in Central Nervous System Disorders”. Brain, Behavior, and Immunity, 38, 1-12. https://doi.org/10.1016/j.bbi.2013.12.015
  • 58. Claustrat, B. and Leston, J. (2014). “Melatonin: Physiological Effects in Humans”. Neurochirurgie, 61, 77-84. https://doi.org/10.1016/j.neuchi.2015.03.002
  • 59. Reiter, R.J, Tan, D.X. and Galano, A. (2014). “Melatonin: Exceeding Expectations”. Physiology, 29, 325-333. https://doi.org/10.1152/physiol.00011.2014
  • 60. Richdale, A.L. and Prior, M.R. (1995). “The Sleep/Wake Rhythm in Children With Autism”. European Child & Adolescent Psychiatry, 4, 175-186. https://doi.org/10.1007/BF01980456
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

İbrahim Hakkı Çağıran 0000-0003-3125-1198

Adviye Gülçin Sağdıçoğlu Celep 0000-0002-4598-5814

Publication Date September 26, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3