Research Article
BibTex RIS Cite

Termofilik Bakterilerden Ekzopolisakkarit Üretimi ve Optimizasyonu

Year 2022, Volume: 8 Issue: 2, 524 - 533, 31.12.2022
https://doi.org/10.29132/ijpas.1142315

Abstract

Ekzopolisakkaritler (EPS), daha yüksek bitkilerden, alglerden, mantarlardan ve bakterilerden ekstrakte edilen büyük moleküler ağırlıklı karbonhidrat polimerleridir.Bu çalışmada kullanılan termofilik Bacillus zhangzhounesis 2ÇA ve Bacillus licheniformis 2ÇS, Çermik kaplıcalarından izole edilmiştir. Farklı bazal besiyerlerinde (M1, M2 ve M3), farklı karbon kaynaklarında (glikoz ve sükroz) ve farklı konsantrasyonlarda maya özütü (%w v-1: 0.05,0.1, 0.15 ve 0.2) eklenen besiyerinde 2CA ve 2CS olarak isimlendirilen bakteri suşlarının çoğalma şartları ve üretilen EPS miktarı araştırılmıştır. Ayrıca, fenol-sülfürik asit yöntemi ve Lowry yöntemi, bakterilerin ürettiği EPS'deki karbonhidrat miktarını ve protein miktarını belirlemek için sırasıyla kullanıldı. B. licheniformis 2CS için en iyi toplam EPS kuru ağırlığı, M3 ortamında (%0.2 maya özütü + %1 sükroz) 121 mg, EPS'deki karbonhidrat miktarı 333.28 µg mL-1, protein miktarı ise 0.19 µg mL-1 olarak elde edildi. Bu iki bakteri üretilen EPS'deki karbonhidrat miktarı bakımından karşılaştırıldığında, en yüksek karbonhidrat miktarının B. zhangzhounesis 2CA'daki EPS’de olduğu tespit edildi (1087.03 µg mL-1). Test edilen mikroorganizmaların ürettiği EPS'nin patojenik mikroorganizmalara (E. coli, S. aureus K. pneumoniae ve P. aeruginosa) karşı antibakteriyel aktiviteleri araştırıldı. En iyi antibakteriyel etkinin, M3 ortamında (%0.2 maya özütü + %1 sükroz) B. licheniformis 2CS bakterisinin ürettiği EPS ile E. coli'ye karşı (16 mm zon çapı ile) olduğu belirlendi.

References

  • Angelin, J. and Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865.
  • Bekler, F. M., Yalaz, S., Güven, R. G. and Güven, K. (2019). Optimization of the thermostable alkaline and Ca-dependent α− amylase production from Bacillus paralicheniformis by statistical modeling. Journal of the Serbian Chemical Society, 84(10), 1093-1104.
  • Berekaa, M. M. (2014). Improved exopolysaccharide production by Bacillus licheniformis strain-QS5 and application of statistical experimental design. International Journal of Current Microbiology and Applied Sciences, 3, 876-886.
  • Berekaa, M. M. and Ezzeldin, M. F. (2018). Exopolysaccharide from Bacillus mojavensis DAS10-1; production and characterization. Journal of Pure and applied Microbiology, 12(2), 633-640.
  • Caggianiello, G., Kleerebezem, M. and Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied microbiology and biotechnology, 100(9), 3877-3886.
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
  • Ergene, E. and Ayşe, A. V. C. I. (2018). Effects of cultural conditions on exopolysaccharide production by Bacillus sp. ZBP4. Journal of Agricultural Sciences, 24(3), 386-393.
  • Farag, A., Gamil, W. and Essawy, E. exopolysaccharıde productıon, extractıon, and characterızatıon from soıl ısolate Bacillus spp. Egyptian Journal of Applied Science, 35(11), 164-173.
  • Farag, M. M., Moghannem, S. A., Shehabeldine, A. M. and Azab, M. S. (2020). Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microbial Pathogenesis, 140, 103947.
  • Freitas, F., Torres, C. A. and Reis, M. A. (2017). Engineering aspects of microbial exopolysaccharide production. Bioresource Technology, 245, 1674-1683.
  • Hidalgo-Cantabrana, C., Sánchez, B., Milani, C., Ventura, M., Margolles, A. and Ruas-Madiedo, P. (2014). Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Applied and Environmental Microbiology, 80(1), 9-18.
  • Jenny Angel, S., Vidyadharani, G., Santhosh, S. and Dhandapani, R. (2018). Optimization and characterisation of thermo stable exopolysaccharide produced from Bacillus licheniformis WSF-1 strain. Journal of Polymers and the Environment, 26(9), 3824-3833.
  • Leroy, F. and De Vuyst, L. (2016). Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. Journal of Dairy Science, 99(4), 3229-3238.
  • Llamas I, Amjres H, Mata JA, Quesada E, Béjar V. 2012. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules 17(6), 7103 7120
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. 1951. Protein measurement with the folin phenol reagent. Journal of Bioogical Chemistry, 193, 265- 275
  • Matpan Bekler F, Yalaz S, Güven K, Güven RG. 2020. Isolation and characterization of thermophilic bacteria from Hot spring in Çermik, Diyarbakır. 3. International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2020), 19 - 20 April 2020 Ankara, Turkey. (Sözlü Full-Text Bildiri) Proceeding Book pp:132-139
  • Miri, M., Bergayou, H., Belmouden, A., Moukrim, A., Baazizi, H. and Boum’handi, N. (2021). Medium optimization for exopolysaccharides production by Bacillus Zhangzhouensis BZ 16 strain isolated from Khnifiss Lagoon. In E3S Web of Conferences (Vol. 234, p. 00099). EDP Sciences.
  • Moghannem, S. A., Farag, M., Shehab, A. M. and Azab, M. S. (2018). Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Brazilian Journal of Microbiology, 49, 452-462.
  • Mohamed, S. S., Amer, S. K., Selim, M. S. and Rifaat, H. M. (2018). Characterization and applications of exopolysaccharide produced by marine Bacillus altitudinis MSH2014 from Ras Mohamed, Sinai, Egypt. Egyptian Journal of Basic and Applied Sciences, 5(3), 204-209.
  • Moretto, C., Castellane, T. C. L., Lopes, E. M., Omori, W. P., Sacco, L. P. and de Macedo Lemos, E. G. (2015). Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia. International Journal of Biological Macromolecules, 81, 291-298.
  • Paulo, E. M., Vasconcelos, M. P., Oliveira, I. S., Affe, H. M. D. J., Nascimento, R., Melo, I. S. D., ... & Assis, S. A. D. (2012). An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, 32, 710-714.
  • Razack, S. A., Velayutham, V. and Thangavelu, V. (2013). Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turkish Journal of Biology, 37(3), 280-288.
  • Saadat, Y. R., Khosroushahi, A. Y. and Gargari, B. P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79-89.
  • Sethi, D., Mohanty, S. and Pattanayak, S. K. (2019). Effect of different carbon, nitrogen and vitamine sources on exopolysaccharide production of Rhizobium species isolated from root nodule of redgram. Indian Journal of Biochemistry and Biophysics (IJBB), 56(1), 86-93.
  • Singh, R. P., Shukla, M. K., Mishra, A., Kumari, P., Reddy, C. R. K. and Jha, B. (2011). Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydrate Polymers, 84(3), 1019-1026.
  • Wang, J., Goh, K. M., Salem, D. R. and Sani, R. K. (2019). Genome analysis of a thermophilic exopolysaccharide-producing bacterium-Geobacillus sp. WSUCF1. Scientific Reports, 9(1), 1-12.
  • Zannini, E., Waters, D. M., Coffey, A. and Arendt, E. K. (2016). Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121-1135.

Production and Optimization of Exopolysaccharide from Thermophilic Bacteria

Year 2022, Volume: 8 Issue: 2, 524 - 533, 31.12.2022
https://doi.org/10.29132/ijpas.1142315

Abstract

Exopolysaccharides (EPS) are the large molecular weight carbohydrate polymers extracted from higher plants, algae, fungi and bacteria. The thermophilic Bacillus zhangzhounesis 2CA and Bacillus licheniformis 2CS used in the present study were isolated from Çermik hot springs. The growth conditions of the strains designated as 2CA and 2CS in different basal media (M1, M2 and M3), different carbon sources and different concentrations of yeast extract (%w v-1: 0.05, 0.1, 0.15 and 0.2) and the amount of EPS produced were investigated. In addition, the phenol-sulfuric acid method and the Lowry method were used to determine the amount of carbohydrates and proteins within the EPS produced by the bacteria, respectively. The highest total EPS dry weight for B. licheniformis 2ÇS was obtained as 121 mg in M3 medium (0.2% yeast extract + 1% sucrose), carbohydrate content in EPS was 333.28 µg mL-1 and protein content was 0.19 µg mL-1. When these two bacteria were compared in terms of the amount of carbohydrates in the EPS produced, the highest amount of carbohydrates was found in EPS of B. zhangzhounesis 2CA (1087.03 µg mL-1). The antibacterial effects of EPS were investigated against pathogenic microorganisms (E. coli, S. aureus, K. pneumoniae and P. aeruginosa). It was determined that the highest antibacterial activity against E. coli (with 16 mm zone diameter) was obtained with EPS produced by B. licheniformis 2ÇS bacteria in M3 medium (0.2% yeast extract + 1% sucrose).

References

  • Angelin, J. and Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865.
  • Bekler, F. M., Yalaz, S., Güven, R. G. and Güven, K. (2019). Optimization of the thermostable alkaline and Ca-dependent α− amylase production from Bacillus paralicheniformis by statistical modeling. Journal of the Serbian Chemical Society, 84(10), 1093-1104.
  • Berekaa, M. M. (2014). Improved exopolysaccharide production by Bacillus licheniformis strain-QS5 and application of statistical experimental design. International Journal of Current Microbiology and Applied Sciences, 3, 876-886.
  • Berekaa, M. M. and Ezzeldin, M. F. (2018). Exopolysaccharide from Bacillus mojavensis DAS10-1; production and characterization. Journal of Pure and applied Microbiology, 12(2), 633-640.
  • Caggianiello, G., Kleerebezem, M. and Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied microbiology and biotechnology, 100(9), 3877-3886.
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
  • Ergene, E. and Ayşe, A. V. C. I. (2018). Effects of cultural conditions on exopolysaccharide production by Bacillus sp. ZBP4. Journal of Agricultural Sciences, 24(3), 386-393.
  • Farag, A., Gamil, W. and Essawy, E. exopolysaccharıde productıon, extractıon, and characterızatıon from soıl ısolate Bacillus spp. Egyptian Journal of Applied Science, 35(11), 164-173.
  • Farag, M. M., Moghannem, S. A., Shehabeldine, A. M. and Azab, M. S. (2020). Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microbial Pathogenesis, 140, 103947.
  • Freitas, F., Torres, C. A. and Reis, M. A. (2017). Engineering aspects of microbial exopolysaccharide production. Bioresource Technology, 245, 1674-1683.
  • Hidalgo-Cantabrana, C., Sánchez, B., Milani, C., Ventura, M., Margolles, A. and Ruas-Madiedo, P. (2014). Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Applied and Environmental Microbiology, 80(1), 9-18.
  • Jenny Angel, S., Vidyadharani, G., Santhosh, S. and Dhandapani, R. (2018). Optimization and characterisation of thermo stable exopolysaccharide produced from Bacillus licheniformis WSF-1 strain. Journal of Polymers and the Environment, 26(9), 3824-3833.
  • Leroy, F. and De Vuyst, L. (2016). Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. Journal of Dairy Science, 99(4), 3229-3238.
  • Llamas I, Amjres H, Mata JA, Quesada E, Béjar V. 2012. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules 17(6), 7103 7120
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. 1951. Protein measurement with the folin phenol reagent. Journal of Bioogical Chemistry, 193, 265- 275
  • Matpan Bekler F, Yalaz S, Güven K, Güven RG. 2020. Isolation and characterization of thermophilic bacteria from Hot spring in Çermik, Diyarbakır. 3. International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2020), 19 - 20 April 2020 Ankara, Turkey. (Sözlü Full-Text Bildiri) Proceeding Book pp:132-139
  • Miri, M., Bergayou, H., Belmouden, A., Moukrim, A., Baazizi, H. and Boum’handi, N. (2021). Medium optimization for exopolysaccharides production by Bacillus Zhangzhouensis BZ 16 strain isolated from Khnifiss Lagoon. In E3S Web of Conferences (Vol. 234, p. 00099). EDP Sciences.
  • Moghannem, S. A., Farag, M., Shehab, A. M. and Azab, M. S. (2018). Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Brazilian Journal of Microbiology, 49, 452-462.
  • Mohamed, S. S., Amer, S. K., Selim, M. S. and Rifaat, H. M. (2018). Characterization and applications of exopolysaccharide produced by marine Bacillus altitudinis MSH2014 from Ras Mohamed, Sinai, Egypt. Egyptian Journal of Basic and Applied Sciences, 5(3), 204-209.
  • Moretto, C., Castellane, T. C. L., Lopes, E. M., Omori, W. P., Sacco, L. P. and de Macedo Lemos, E. G. (2015). Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia. International Journal of Biological Macromolecules, 81, 291-298.
  • Paulo, E. M., Vasconcelos, M. P., Oliveira, I. S., Affe, H. M. D. J., Nascimento, R., Melo, I. S. D., ... & Assis, S. A. D. (2012). An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, 32, 710-714.
  • Razack, S. A., Velayutham, V. and Thangavelu, V. (2013). Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turkish Journal of Biology, 37(3), 280-288.
  • Saadat, Y. R., Khosroushahi, A. Y. and Gargari, B. P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79-89.
  • Sethi, D., Mohanty, S. and Pattanayak, S. K. (2019). Effect of different carbon, nitrogen and vitamine sources on exopolysaccharide production of Rhizobium species isolated from root nodule of redgram. Indian Journal of Biochemistry and Biophysics (IJBB), 56(1), 86-93.
  • Singh, R. P., Shukla, M. K., Mishra, A., Kumari, P., Reddy, C. R. K. and Jha, B. (2011). Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydrate Polymers, 84(3), 1019-1026.
  • Wang, J., Goh, K. M., Salem, D. R. and Sani, R. K. (2019). Genome analysis of a thermophilic exopolysaccharide-producing bacterium-Geobacillus sp. WSUCF1. Scientific Reports, 9(1), 1-12.
  • Zannini, E., Waters, D. M., Coffey, A. and Arendt, E. K. (2016). Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121-1135.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Firdevs Rozan Tuşar 0000-0003-3978-8416

Kemal Güven 0000-0002-0181-3746

Fatma Matpan Bekler 0000-0001-8253-9568

Nazlı Polat 0000-0002-3877-4541

Early Pub Date December 29, 2022
Publication Date December 31, 2022
Submission Date July 8, 2022
Acceptance Date November 13, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

APA Tuşar, F. R., Güven, K., Matpan Bekler, F., Polat, N. (2022). Production and Optimization of Exopolysaccharide from Thermophilic Bacteria. International Journal of Pure and Applied Sciences, 8(2), 524-533. https://doi.org/10.29132/ijpas.1142315
AMA Tuşar FR, Güven K, Matpan Bekler F, Polat N. Production and Optimization of Exopolysaccharide from Thermophilic Bacteria. International Journal of Pure and Applied Sciences. December 2022;8(2):524-533. doi:10.29132/ijpas.1142315
Chicago Tuşar, Firdevs Rozan, Kemal Güven, Fatma Matpan Bekler, and Nazlı Polat. “Production and Optimization of Exopolysaccharide from Thermophilic Bacteria”. International Journal of Pure and Applied Sciences 8, no. 2 (December 2022): 524-33. https://doi.org/10.29132/ijpas.1142315.
EndNote Tuşar FR, Güven K, Matpan Bekler F, Polat N (December 1, 2022) Production and Optimization of Exopolysaccharide from Thermophilic Bacteria. International Journal of Pure and Applied Sciences 8 2 524–533.
IEEE F. R. Tuşar, K. Güven, F. Matpan Bekler, and N. Polat, “Production and Optimization of Exopolysaccharide from Thermophilic Bacteria”, International Journal of Pure and Applied Sciences, vol. 8, no. 2, pp. 524–533, 2022, doi: 10.29132/ijpas.1142315.
ISNAD Tuşar, Firdevs Rozan et al. “Production and Optimization of Exopolysaccharide from Thermophilic Bacteria”. International Journal of Pure and Applied Sciences 8/2 (December 2022), 524-533. https://doi.org/10.29132/ijpas.1142315.
JAMA Tuşar FR, Güven K, Matpan Bekler F, Polat N. Production and Optimization of Exopolysaccharide from Thermophilic Bacteria. International Journal of Pure and Applied Sciences. 2022;8:524–533.
MLA Tuşar, Firdevs Rozan et al. “Production and Optimization of Exopolysaccharide from Thermophilic Bacteria”. International Journal of Pure and Applied Sciences, vol. 8, no. 2, 2022, pp. 524-33, doi:10.29132/ijpas.1142315.
Vancouver Tuşar FR, Güven K, Matpan Bekler F, Polat N. Production and Optimization of Exopolysaccharide from Thermophilic Bacteria. International Journal of Pure and Applied Sciences. 2022;8(2):524-33.

154501544915448154471544615445