

498

Süleyman Demirel University
Journal of Natural and Applied Sciences

Volume 23, Issue 2, 498-504, 2019

Süleyman Demirel Üniversitesi
Fen Bilimleri Enstitüsü Dergisi
Cilt 23, Sayı 2, 498-504, 2019

 DOI: 10.19113/sdufenbed.529039

Development of Kernel Mode RAM Driver for RAM Image on Windows

Ahmet Ali SÜZEN*1 , Kubilay TAŞDELEN2 , Ecir Uğur KÜÇÜKSİLLE3

1Isparta Uygulamalı Bilimler Üniversitesi, Uluborlu Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü, 32100,
Isparta, Türkiye

2Isparta Uygulamalı Bilimler Üniversitesi, Teknoloji Fakültesi, Elektrik Elektronik Mühendisliği Bölümü, 32100,
Isparta, Türkiye

3Süleyman Demirel Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, 32100, Isparta, Türkiye

(Alınış / Received: 19.02.2019, Kabul / Accepted: 19.04.2019, Online Yayınlanma / Published Online: 30.08.2019)

Keywords
C++,
Kernel-mode driver,
Memory forensics,
RAM architecture

Abstract: In the field of computer forensics live analysis through immediate
intervention is an important way of gathering electronic evidence. The way to
obtain evidence from volatile data using live analysis is to take an image of the
RAM (Random Access Memory). The entire RAM has to be copied in order to
import data from this image. However, since the user mode is the default mode in
Windows operating systems only the running processes can be accessed.
Therefore, RAM imaging software needs to work at Kernel Mode level. In this
study, a RAM driver was developed using WDK (Window Driver Kit) to enable
RAM imaging software to run in Kernel Mode. The developed driver works on
Windows 8, 8.1 and 10 (32 bit and 64 bit) operating systems. Virtual addresses,
physical addresses and table pages for RAM can be accessed using the developed
RAM driver. In this way, image acquisition software using this driver is able to
carry out bit-to-bit copying of RAM. In addition, a program to import a RAM image
in c ++ using this driver has also been developed. When the image retrieval
software is installed in RAM it occupies a meager 156 KB of space. Compared to the
existing image acquisition software, the developed RAM driver and software seem
to use the least RAM. In addition, there are no examples of Kernel Mode RAM
Drivers developed using WDK in the literature.

Windows’da RAM İmajı için Kernel Mode RAM Sürücüsü

Anahtar Kelimeler
C++,
Çekirdek mod sürücü,
Hafıza adli bilişimi,
RAM mimarisi

Özet: Adli bilişim alanındaki elektronik delil etme sürecinde, ilk müdahale ile canlı
analiz önemli bir yer tutmaktadır. Canlı analiz ile uçucu verilerden delil elde etme,
RAM (Random Access Memory) ‘in imajı alınarak gerçekleştirilir. Alınan imajdan
veri kazımak için RAM’ in tamamının kopyalanması gerekmektedir. Fakat
Windows işletim sisteminde default olarak User-Mode kullanıldığı için sadece
çalışan process’lere erişilebilmektedir. Bu nedenle RAM imajı yazılımlarının
Kernel-Mode seviyesinde çalışması gerekmektedir. Bu çalışmada, RAM imajı
yazılımlarının Kernel-Mode’da çalışabilmesi için WDK (Window Driver Kit) ile
RAM sürücüsü geliştirilmiştir. Geliştirilen sürücü, Windows 8, 8.1 ve 10 (32 bit ve
64 bit) işletim sistemlerinde çalışmaktadır. Geliştirilen RAM sürücü aracılığıyla
RAM’in sanal adreslerine, fiziksel adreslerine ve tablo sayfalarına
erişilebilmektedir. Böylece sürücüyü kullanan imaj alma yazılımların, RAM’i bit-to-
bit kopyalamasına imkân sağlanmaktadır. Ayrıca, bu sürücü kullanarak c++ dilinde
bir ram imajı alma programı geliştirilmiştir. İmaj alma yazılımı RAM’e
yüklendiğinde 156 KB’lık yer kaplamaktadır. Geliştirilen RAM sürücüsü ve
yazılımının, imaj alma yazılımları arasında RAM’ı en az kullandığı görülmektedir.
Ayrıca literatürde WDK ile geliştirilen Kernel Mode RAM sürücüsü hakkında
çalışma bulunmamaktadır.

*Corresponding author: ahmetsuzen@isparta.edu.tr

https://orcid.org/0000-0002-5871-1652
https://orcid.org/0000-0001-5664-3898
https://orcid.org/0000-0002-3293-9878

A.A. Süzen vd. / Development of Kernel Mode RAM Driver for RAM Image on Windows

499

1. Introduction

In the prosecution of cybercrimes, electronic
evidence is needed rather than physical evidence. In
particular, RAM must be tampered with in order to
collect evidence [1]. This means copying the data
stored in the RAM onto a disc using image acquisition
software. Electronic evidence is obtained by applying
the data-carving methods noted in image [2].

Studies conducted in the 1990s revealed just how
important the data stored in RAM is. However, no
method for obtaining this data had yet been
developed [3]. The first ever RAM image acquisition
and analysis application is known as KNTTools, and
was developed in 2005. Using KNTTools, the RAM
image is subjected to a thread search analysis [4]. In
studies made between 2006 and 2012 using
Windows XP data of less than 4KB was extracted
from RAM using search and carve methods. With the
restriction of full access to RAM in the Windows Vista
operating system, these studies lost their validity. [5-
10]. For Windows Vista, 7, 8, 8.1 and 10 operating
systems a Kernel Mode RAM driver is required in
order to obtain RAM images [11]. RAM driver and
image acquisition software using this driver have
been developed by commercial companies and open
source developers. However, the studies in the
literature were all carried out using commercially
available software [12].

In Windows operating systems the RAM image shows
what operations were performed by the user. In
studies in the literature RAM was scanned to identify
pictures, document files, malware detection and
running processes [13-16]. The results obtained from
the scans were found to vary depending on the
operating system version, RAM capacity and received
image management. In the analysis process, high
success has been achieved in the data resulted in the
detection of images, malware and running processes
[13, 14]. However, it is seen that the success rate for
obtaining the data from document files is also very
low [15, 16].

There are two types of security level in the Windows
operating system: ring0 (kernel mode) and ring3
(user mode). The commands sent directly from the
processor to the RAM are processed in Kernel Mode.
Applications that run through APIs run in User Mode
since they do not have direct hardware access [17].

In Windows operating systems 50% of the available
RAM is allocated to Kernel Mode for exclusive use
and the remaining 50% to User Mode [18]. The
operating system makes virtual addressing in RAM
with 4KB page sizes. For a 32-bit operation, the
maximum virtual address space is 2GB in size and in
the address range 0x00000000 through 0x7FFFFFFF.
For a 64-bit operation the maximum virtual address
space is 8 TB in size in the address range
0x000'00000000 - 0x7FF'FFFFFFFF [19].

In our study a Kernel Mode RAM Driver was
developed for use in RAM image acquisition software.
When the driver is installed on the system it provides
Kernel Mode access to the software using it. This
allows access to all of the virtual and physical
addresses created for RAM. The RAM image
acquisition software was developed using the coded
Kernel Mode RAM Driver.

2. Methods

2.1. Kernel mode and user mode

There are four different security levels for x86 or x64
processors. These are ring0 (kernel mode), ring1,
ring2 and ring3 (user mode) [20]. In Windows
operating systems, Kernel and User Mode are
utilized. The processor switches between the two
modes depending on the type of command that runs
on it. Applications run in User Mode. The core
operating system components also run in Kernel
Mode. At the same time, while many drivers run in
Kernel Mode some drivers are able to run in User
Mode. When a User Mode application is started, the
Windows operating system creates a process for the
application. The process provides an application-
specific virtual address space and a custom handling
table. Since an application's virtual address space is
private the application cannot change the data of
another application. Each application runs on its own.
If a crash happens the lockdown is limited to this
application. Other applications and operating systems
are not affected by the lockdown [21].

At the User Mode security level the virtual address
space is limited. A process running in User Mode
cannot access the virtual addresses reserved for the
operating system. Limiting the virtual address space
of a User Mode application prevents the application
from changing and damaging critical system data.
Commands running in kernel mode share a single
common virtual address space. Therefore, if the
Kernel Mode driver mistakenly writes to a different
virtual address it could put the operating system or
other driver's data in jeopardy. In addition, if a
Kernel Mode driver generates an error in the system
the operating system is also affected by this error
[22]. The diagram in Figure 1 shows the interaction
structure between User and Kernel Mode
components.

Figure 1. User and kernel mode to interaction [23]

A.A. Süzen vd. / Development of Kernel Mode RAM Driver for RAM Image on Windows

500

2.2. RAM management

The virtual address range available for a process is
called the process's virtual address space. In User
Mode each process has its own virtual address space.
For a 32-bit process the virtual address space is
between 0x00000000 and 0x7FFFFFFF. For a 64-bit
process the virtual address space is between
0x000'00000000 - 0x7FF'FFFFFFFF. The virtual
addresses defined for the process are also called
virtual memory [18].

Figure 2 shows the location of two 64-bit processes
named myapp.exe and myapp1.exe in RAM. Both
processes are located at addresses in the virtual
address space. Both processes are stored in
shadowed 4 KB pages. In the virtual space three
adjacent addresses of the MyApp.exe process and the
two adjacent addresses in the myapp1.exe process
are mapped to non-adjacent addresses on the RAM
page. Again, the two processes are also paged in an
address that is different from the addresses in the
virtual address space [24].

Figure 2. Samples process management.

In User Mode the virtual address space for the 32-bit
operating system is 2 GB and 8 TB for the 64-bit
system. In Kernel Mode the virtual address space for
the 32-bit operating system is 2 GB and 248 TB for
the 64-bit system [24].

2.2.1. EPROCESS

All processes running on the Windows operating
system are kept in the EPROCESS (Executive Process)
table. The EPROCESS table stores the process ID,
creation date, release date, and exit status
information of the running process [19].

2.2.2. PEB

The Process Environment Block (PEB) is where one
of the data structures in EPROCESS, the properties,

attributes, memory addresses, operating system
version and DLL information of the running process
are stored. In addition, the initial address of the
running process is also accessed from the PEB [12].

2.2.3. File_Object

The File_Object table is where I / O functions, file
names, and cache information of the terminated
process created by the Windows operating system
are kept. At the same time, File_Object also contains
the folder and device information for the open files
[25].

2.2.4. Pagefile.sys

Pagefile.sys is the system file that the Windows
operating system uses as a temporary memory when
RAM capacity is insufficient. This system file must be
included in the RAM image in order to perform a
complete analysis in computer forensics processes
[25].

2.3. Windows driver kit

The WDK is the library used to develop User or
Kernel Driver Mode with C ++ using the Visual Studio
platform as shown in Figure 3. To use a User or
Kernel Mode Driver developed with the WDK it has to
be signed and tested. The Windows Hardware
Certification Kit and the Hardware Lab Kit are used
for signing and testing in the WDK.

Figure 3. Varieties of WDK driver.

3. The Study

3.1. Kernel mode ram driver development

The Windows driver was developed with the C ++
programming language in the WDK template using
the Windows Driver Frameworks (WDF) library. The
WDK required to develop the driver is included in the
Visual Studio 2015 and 2017 platforms. The WDK is
also used in Windows 7 and later operating systems.

The developed driver needs to have a digital
signature in order to be able to run in the operating
system. Extended Validation Code Signing Certificates
(EVCSC) were used to provide digital signatures for
the Kernel Mode Driver. EVCSC are digital signature
certificates that include the hardware security

A.A. Süzen vd. / Development of Kernel Mode RAM Driver for RAM Image on Windows

501

modules required for the operation of the Kernel
Mode driver in operating systems. This certificate is
purchased from security companies for commercial
use. Digital signing is done with the Test Certificate
Kit during driver development and testing with WDK.
The Test Certificate Kit is software that enables the
Kernel Mode driver to be tested and used in the
Windows operating system. To use the certificate
generated with the Test Certificate Kit the Windows
operating system must be configured to "disable
driver signing enforcement" in the initial settings.

When a new kernel driver is installed in the operating
system it communicates with I/O, Power and Plug &
Play managers. During the initial installation of the
driver a request is sent to the I/O manager. This
request is made with the IRPs (I / O Request Packets)
parameters in the driver file. The driver to be loaded
must respond correctly to the I/O manager's request
with the IRPs parameter. If incorrect parameters are
sent this causes a lockout, freezing or blue screen
errors since it will be through Kernel Mode [12].

The driver development process begins with the
opening of a new Kernel Mode Driver template via
Visual Studio 2017, as shown in Figure 4.

Figure 4. Template of kernel mode driver.

In the new project template, driver.c has been created
in order to create the driver, and the c ++ library file
address_pte_list has been created in order to access
the addresses on the PTE. The functions DriverEntry
and A2SRamDriverEvtDeviceAdd, which send
requests to the I/O manager in the Driver.c file are
defined as in Figure 5.

Figure 5. Use of DriverEntry and A2SRamDriver
EvtDeviceAdd functions.

The FILE_READ_DATA function of the library wdm.h
in WDF is used to give the driver access to RAM
addresses. The IoCreateDeviceSecure function needs
to be set as shown in Figure 6 to give the driver
access to RAM.

Figure 6. Call of IoCreateDeviceSecure functions.

After the driver is loaded into the system, device
identification is performed to access RAM via the
image acquisition software.

#define A2S_DEVICE_NAME L"a2sram"

When the driver is loaded into the system, the IRPs
parameters are communicated to the I/O manager via
the IRP_MJ_READ and IRP_MJ_WRITE functions,
which are referenced from the library wdm.h as
shown in Figure 7.

Figure 7. IRP_MJ_READ and IRP_MJ_WRITE functions.

The ___outword and __inword functions of the wdm.h
library provide access to RAM address ranges using
the functions shown in Figure 8. In addition, test data
and read commands are sent to each address. In this
way, address jump is prevented when the RAM's
image is taken.

Figure 8. Driver's RAM access functions.

The RAM driver must have a digital signature file in
order to be loaded into the operating system. The
digital signature can be obtained by following the
path Signing> Test Certificate> Create Test Certificate
from the Properties window of the Project (Figure 9).

A.A. Süzen vd. / Development of Kernel Mode RAM Driver for RAM Image on Windows

502

Figure 9. Obtaining test certificate for driver.

3.2. Testing the kernel mode driver

To create the Kernel Mode RAM Driver's system files
the project must first be compiled. After compilation
a driver installation file named A2SRamDriver.sys
and a Kernel Mode driver named A2SRamDriver.inf
are generated in the Debug folder. The developed
drivers are compiled separately for 32bit and 64bit in
Visual Studio, and driver files are created.

The developed RAM driver file needs to be tested
using image acquisition software. Image acquisition is
carried out in different RAM capacities on Windows
8, 8.1 and 10 (32 and 64 bit) operating systems. The
2GB pagefile.sys file allocated by the memory
management is also included in the image. The driver
usage model for the image acquisition software is
given in Figure 10. As can be seen in Fig. 11, the
driver has been successfully loaded into the system
and the RAM bit-to-bit image has been taken.

Figure 10. Driver's operating model.

Figure 11. Testing the driver.

4. Conclusion and Future Work

The operating system stores user-generated
processes and data in RAM. Therefore, data crucial
data to the prosecution of cybercrimes are very likely
to be found in RAM. A bit-to-bit image must be
retrieved in order to collect data from RAM.

The purpose of the study is to copy the entire
contents of the RAM from the user interface in the
operating system. A Kernel Mode driver has been
developed that provides full access to RAM to achieve
this goal. The developed Kernel Mode RAM driver has
been tested on Windows 8, 8.1 and 10 (32 and 64 bit)
operating systems, and image acquisition has been
achieved. The durations of image capture in each
operating system version for different RAM sizes are
given in Table 1. As can be seen, the larger the RAM
size, the longer it takes to obtain an image. Moreover,
it seems that the installation of the operating system
on either a virtual or a physical machine has no effect
on the image acquisition time.

Table 1. Image acquisition times based on windows
operating system version.

OS Version
RAM
(GB)

Pagefile.sys
Size (GB)

RAM
Imager
Time
(second)

Windows 8 32
bit (Virtual
Machine)

 2GB 2GB 13

Windows 8 64
bit (Virtual
Machine)

 2GB 2GB 14

Windows 8.1
32 bit ((Virtual
Machine)

4GB 2GB 17

Windows 8.1
64 bit (Virtual
Machine)

4GB 2GB 17

Windows 10
32 bit (Virtual
Machine)

8GB 2GB 21

Windows 10
64 bit (Virtual
Machine)

12 GB 2GB 33

Windows 10
64 bit (Physical
Machine)

12 GB 2GB 33

When acquiring a RAM image the image retrieval
software needs to occupy the minimum of RAM space
since it is possible to accidentally delete the existing
data when installing the image retrieval software.
The developed RAM driver and image acquisition
software take up 156KB of RAM. Therefore, this
software is the less likely to cause data loss when
compared to the image acquisition software given in
Table 2.

A.A. Süzen vd. / Development of Kernel Mode RAM Driver for RAM Image on Windows

503

Table 2. Space that RAM image retrieval software occupy
in the RAM.

Image Dumper RAM Size

Forensic Toolkit 13 MB

WinEn (EnCase) 120 MB

KnTDD (KnTTools) 19 MB
Fastdump Pro 3 MB

Guymager 56 MB

Fmem 43 MB

Memoryze 6 MB

Memory DD 7 MB

Belkasoft Live RAM Capturer 6.5 MB

DumpIt 0.5 MB

Windows Memory Toolkit 12 MB

There are studies in the literature involving kernel
process development [7]. These studies worked on
Windows Vista and earlier operating systems [7,11].
There are no studies related to the development of
Kernel Mode RAM drivers. The images used in RAM
analysis were taken from open source code or
commercial software [3,5,8,9].

The study was developed with a view to application
in computer forensics. The Kernel Mode driver
provides access to all RAM addresses and operations.
Future work planned for this includes data scraping
operations on the RAM image. The goal is to allow
access to such user information as password, picture,
word and pdf files as a result of file searching and file
carving.

Acknowledgements

I would like to express my greatest gratitude to
Süleyman Demirel University Scientific Research
Projects Coordination Unit Board of Management,
who supported this study with the project numbered
5035–D1–17.

References

[1] Amari, K. (2009). Techniques and tools for

recovering and analyzing data from volatile
memory. SANS Institute InfoSec Reading Room.

[2] Ariffin, K. A. Z., Mahmood, A. K., Jaafar, J., &
Shamsuddin, S. (2015). Tracking File's Metadata
from Computer Memory Analysis. In Computer
and Information Technology; Ubiquitous
Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive
Intelligence and Computing
(CIT/IUCC/DASC/PICOM), 2015 IEEE
International Conference on (pp. 975-980).
IEEE.

[3] Butler, J., & Murdock, J. (2011). Physical Memory
Forensics for Files and Cache.
Craigchamberlain.Dreamhosters.Com. Retrieved
fromhttp://www.craigchamberlain.dreamhoste
rs.com/blackhat2011/materials/Butler/BH_US_

11_ButlerMurdock_Physical_Memory_Forensics
WP.pdf%5Cnpapers2://publication/uuid/0D58
8947-26F8-4823-86C4-B1E231D50CD4

[4] Vidas, T. (2007). The Acquisition and Analysis of
Random Access Memory. Journal of Digital
Forensic Practice, 1(4), 315–323.
https://doi.org/10.1080/15567280701418171

[5] Dolan-Gavitt, B. (2007). The VAD tree: A
process-eye view of physical memory. Digital
Investigation, 4(SUPPL.), 62–64.
https://doi.org/10.1016/j.diin.2007.06.008

[6] Garcia, G. L. (2007). Forensic physical memory
analysis: an overview of tools and techniques. In
TKK T-110.5290 Seminar on Network Security,
305–320.

[7] Russinovich,M., Solomon, A., Ionescu, A.,
Windows Internals (6th Edition), Part 2,
Microsoft Press, 2012.

[8] Petroni, N. L., Walters, Aa., Fraser, T., & Arbaugh,
W. A. (2006). FATKit: A framework for the
extraction and analysis of digital forensic data
from volatile system memory. Digital
Investigation, 3(4), 197–210.
https://doi.org/10.1016/j.diin.2006.10.001

[9] Richard III, G. G., & Roussev, V., (2005). Scalpel:
A Frugal, High Performance File Carver.
In DFRWS.

[10] Ruichao.Z, Lianhai. W, Shuhui. Z., (2009).
Windows Memory Analysis Based on KPCR. In:
Fifth International Conference on Information
Assurance and Security, vol. 2, pp.677-680.

[11] Schatz, B., Director, E., (2007). Recent
developments in volatile memory
forensics. URL: http://www.
schatzforensic.com/presentations/BSchatz-
CERT-CSD2007 .pdf.

[12] Zhang, L., Zhang, D., & Wang, L. (2010). Live
digital forensics in a virtual machine. ICCASM
2010 - 2010 International Conference on
Computer Application and System Modeling,
Proceedings, 4(Iccasm), 328–332.
https://doi.org/10.1109/ICCASM.2010.562036
4

[13] Simon, M., Slay, J., (2010). Recovery of Skype
Application Activity Data from Physical Memory,
2010 International Conference on Availability,
Reliability and Security, p: 284-288s.

[14] Okolica, J., & Peterson, G. L. (2010). Windows
operating systems agnostic memory analysis.
Digital investigation, 7, S48-S56.

[15] Sitaraman, S. (2006). Computer and Network
Forensics. Digital Crime and Forensic Science in
Cyberspace. Hershey: Idea Group Inc. pp. 55-74.

[16] Stüttgen, J., Vömel, S., & Denzel, M. (2015).
Acquisition and analysis of compromised

https://doi.org/10.1080/15567280701418171
https://doi.org/10.1016/j.diin.2007.06.008
https://doi.org/10.1016/j.diin.2006.10.001
https://doi.org/10.1109/ICCASM.2010.5620364
https://doi.org/10.1109/ICCASM.2010.5620364

A.A. Süzen vd. / Development of Kernel Mode RAM Driver for RAM Image on Windows

504

firmware using memory forensics. Digital
Investigation, 12, S50–S60.

[17] Li, S., Jia, X., Lv, S., & Shao, Z. (2010). Research
and application of USB filter driver based on
windows kernel. 3rd International Symposium
on Intelligent Information Technology and
Security Informatics, IITSI 2010, 438–441.
https://doi.org/10.1109/IITSI.2010.10

[18] Matousek, T., & Jezek, P. (2009). DeSpec:
Modeling the Windows Driver Environment.
Electronic Notes in Theoretical Computer
Science, 203(7), 55–69.
https://doi.org/10.1016/j.entcs.2009.03.026

[19] Liwei, W. (2007). The Development of Device
Driver under the Windows Operation System
[J]. Computer & Digital Engineering, 3, 066.

[20] Ni, T., Yin, Z., Wei, Q., & Wang, Q. (2012,
November). High-Coverage Security Testing for
Windows Kernel Drivers. In Multimedia
Information Networking and Security (MINES),
2012 Fourth International Conference on (pp.
905-908). IEEE.

[21] Van Baar, R. B., Alink, W., & van Ballegooij, A. R.
(2008). Forensic memory analysis: Files mapped
in memory. Digital Investigation, 5(SUPPL.), 52–
57. https://doi.org/10.1016/j.diin.2008.05.014

[22] Okolica, J. S., & Peterson, G. L. (2011). Windows
driver memory analysis: A reverse engineering
methodology. Computers & Security, 30(8), 770-
779.

[23] Matousek, T., & Jezek, P. (2009). DeSpec:
Modeling the Windows Driver Environment.
Electronic Notes in Theoretical Computer
Science, 203(7), 55–69.
https://doi.org/10.1016/j.entcs.2009.03.026

[24] Vömel, S., & Freiling, F. C. (2011). A survey of
main memory acquisition and analysis
techniques for the windows operating system.
Digital Investigation, 8(1), 3–22.
https://doi.org/10.1016/j.diin.2011.06.002

[25] Vömel, S., & Stuttgen, J. (2013). An evaluation
platform for forensic memory acquisition
software. Digital Investigation, 10(SUPPL.), 30–
40. https://doi.org/10.1016/j.diin.2013.06.004

https://doi.org/10.1109/IITSI.2010.10
https://doi.org/10.1016/j.entcs.2009.03.026
https://doi.org/10.1016/j.diin.2008.05.014
https://doi.org/10.1016/j.diin.2011.06.002

