Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Plasma PGC1-α, Irisin, BDNF, GAL, and GALP Levels in Parkinson's Disease

Yıl 2021, , 145 - 161, 30.08.2021
https://doi.org/10.51754/cusbed.948015

Öz

The roles of novel peptides such as transcription cofactor peroxisome proliferator 1-alpha (PGC1-α), irisin, brain-derived neurotrophic factor (BDNF), galanin (GAL) and galanin-like peptide (GALP) in Parkinson's disease (PD) are not fully known. This study, plasma levels of the novel peptides that may affect the pathophysiology of PD were examined. The study was conducted as a cross-sectional. The study consisted of two groups, including 45 newly diagnosed patients with idiopathic PD and 45 healthy individuals. The peptide levels in plasma samples collected from the groups were measured by the ELISA method. The means ages of both groups were over 65 years old and the age difference was insignificant. When plasma PGC1-α, irisin, BDNF, GAL, and GALP levels between the groups were examined, it was determined that the median levels of the patient group (3.38[2.60-4.43]ng/mL, 12.77[9.70-15.04]ng/mL, 1.61[1.35-2.01]ng/mL, 15.46[12.98-17.77]ng/L, and 47.68[32.5-65.86]pg/mL, respectively) were lower compared to the control group (5.98[4.99-7.03]ng/mL, 18.77[15.01- 20.53]ng/mL, 4.39[3.70-4.95]ng/mL, 21.32[16.70-25.87]ng/L, and 48.92[28.66-69.68]pg/mL, respectively). While significant positive low correlations were found between plasma BDNF levels and GAL and irisin, significant positive moderate correlations were found between plasma PGC1-α levels and BDNF, irisin and GAL. A significant negative correlation was found between age and BNDF levels. As far as we know, the study is the first report in the literature in which the aforementioned peptides associated with PD were examined together. We consider that more detailed studies are needed to shed light on the roles and mechanisms of these peptides in PD.

Destekleyen Kurum

Kafkas University Scientific Research Projects Coordination Office

Proje Numarası

2019-TS-62

Teşekkür

Kafkas University

Kaynakça

  • Agarwal S, Yadav A, Chaturvedi RK (2017) Peroxisome proliferator-activated receptors as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun. 483(4):1166-77. https://doi.org/10.1016/j.bbrc.2016.08.043
  • Akbayır E, Sen M, Ay U, Senyer S, Tuzun E, Kucukali Cİ (2017) Etiopathogenesis of parkinson’s disease. Experimed. 7(13):1-23.
  • Bost F, Kaminski L (2019) The metabolic modulator PGC-1α in cancer. Am J Cancer Res. 9(2):198-211. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405967/
  • Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 481:463-68. https://doi.org/10.1038/nature10777
  • Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 21(3):396-413. https://doi.org/10.1089/ars.2014.5851
  • Cheng A, Wan R, Yang JL, Kamimura N, Son TG, Ouyang X, Luo Y, Okun E, Mattson MP (2012) Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun. 3:1250. https://doi.org/10.1038/ncomms2238
  • Choi YK, Kim MK, Bae KH, Seo HA, Jeong JY, Lee WK, Kim JG, Lee IK, Park KG (2013) Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract. 100(1):96-101. https://doi.org/10.1016/j.diabres.2013.01.007 Counts SE, Perez SE, Ginsberg SD, Mufson EJ (2010) Neuroprotective role for galanin in Alzheimer's disease. Exp Suppl. 102:143-62. https://doi.org/10.1007/978-3-0346-0228-0_11
  • de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR, da Luz Scheffer D, Aguiar AS Jr (2019) The role of PGC-1α/UCP2 signaling in the beneficial effects of physical exercise on the brain. Front Neurosci. 13:292. https://doi.org/10.3389/fnins.2019.00292
  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 2013;3(4):461-91. https://doi.org/10.3233/JPD-130230
  • Eschbach J, von Einem B, Müller K, Bayer H, Scheffold A, Morrison BE, Rudolph KL, Thal DR, Witting A, Weydt P, Otto M, Fauler M, Liss B, McLean PJ, Spada AR, Ludolph AC, Weishaupt JH, Danzer KM (2015) Mutual exacerbation of peroxisome proliferator-activated receptor gamma coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol. 77(1):15–32. https://doi.org/10.1002/ana.24294
  • Falkenstetter S, Leitner J, Brunner SM, Rieder TN, Kofler B, Weis S (2020) Galanin System in Human Glioma and Pituitary Adenoma. Front. Endocrinol. 11:155. https://doi.org/10.3389/fendo.2020.00155
  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology. 17(5): 427–42. https://doi.org/10.1212/wnl.17.5.427
  • Huang Y, Huang C, Yun W (2019) Peripheral BDNF/TrkB protein expression is decreased in Parkinson's disease but not in Essential tremor. J Clin Neurosci. 63:176-81. https://doi.org/10.1016/j.jocn.2019.01.017
  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease. A clinico-pathological study of 100 cases. JNNP. 55:181-84. https://doi.org/10.1136/jnnp.55.3.181
  • Jin Y, Sumsuzzman DM, Choi J, Kang H, Lee SR, Hong Y (2018) Molecular and functional ınteraction of the myokine ırisin with physical exercise and alzheimer's disease. Molecules. 23(12):3229. https://doi.org/10.3390/molecules23123229
  • Kalia LV, Lang AE (2015) Parkinson's disease. Lancet. 386(9996):896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
  • Kim OY, Song J (2018) The Role of Irisin in Alzheimer's Disease. J Clin Med. 7(11):407. https://doi.org/10.3390/jcm7110407
  • Lang R, Berger A, Santic R, Geisberger R, Hermann A, Herzog H, Kofler B (2005) Pharmacological and functional characterization of galanin-like peptide fragments as potent galanin receptor agonists.Neuropeptides. 39(3):179-84. https://doi.org/10.1016/j.npep.2004.12.015
  • Lang R, Gundlach AL, Kofler B (2007) The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther. 115(2):177-207. https://doi.org/10.1016/j.pharmthera.2007.05.009
  • Lee SH, Lee JH, Lee HY, Min KJ (2019) Sirtuin signaling in cellular senescence and aging. BMB Rep. 52(1):24-34. https://doi.org/10.5483/BMBRep.2019.52.1.290
  • Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, Ricart W, Fernández-Real JM (2013) Irisin Is Expressed and Produced by Human Muscle and Adipose Tissue in Association With Obesity and Insulin Resistance. J Clin Endocrinol Metab. 98(4): E769–78. https://doi.org/10.1210/jc.2012-2749
  • Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC (2019) Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer's Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci. 20(2):257. https://doi.org/10.3390/ijms20020257
  • Ohtaki T, Kumano S, Ishibashi Y, Ogi K, Matsui H, Harada M, Kitada C, Kurokawa T, Onda H, Fujino M (1999) Isolation and cDNA Cloning of a Novel Galanin-like Peptide (GALP) from Porcine Hypothalamus. J Biol Chem. 274(52):37041–45. https://doi.org/10.1074/jbc.274.52.37041
  • Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G (2020) BDNF as a promising therapeutic agent in parkinson's disease. Int J Mol Sci. 21(3):1170. https://doi.org/10.3390/ijms21031170
  • Parkinson J (2002) An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci. 14(2):223-36. https://doi.org/10.1176/jnp.14.2.223
  • Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 83:84–92. https://doi.org/10.1016/j.yexmp.2006.09.008
  • Rabiee F, Lachinani L, Ghaedi S, Nasr-Esfahani MH, Megraw TL, Ghaedi K (2020) New insights into the cellular activities of Fndc5/Irisin and its signaling pathways. Cell Biosci. 10:51. https://doi.org/10.1186/s13578-020-00413-3
  • Shioda S, Kageyama H, Takenoya F, Shiba K (2011) Galanin-like peptide: a key player in the homeostatic regulation of feeding and energy metabolism? Int J Obes (Lond). 35:619-28. https://doi.org/10.1038/ijo.2010.202
  • Siuda J, Patalong-Ogiewa M, Żmuda W, Targosz-Gajniak M, Niewiadomska E, Matuszek I, Jędrzejowska-Szypułka H, Lewin-Kowalik J, Rudzińska-Bar M (2017) Cognitive impairment and BDNF serum levels. Neurol Neurochir Pol. 51(1):24-32. https://doi.org/10.1016/j.pjnns.2016.10.001
  • Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, Nishida M, Song L, Wang D, Federoff HJ (2015) PGC-1α Promoter Methylation in Parkinson's Disease. PloS one. 10(8):e0134087. https://doi.org/10.1371/journal.pone.0134087
  • Tatemoto K, Rökaeus A, Jörnvall H, McDonald TJ, Mutt V (1983) Galanin - a novel biologically active peptide from porcine intestine. FEBS Lett. 164(1):124–28. https://doi.org/10.1016/0014-5793(83)80033-7
  • Wrann CD (2015) FNDC5/irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plast. 1(1):55-61. https://doi.org/10.3233/BPL-150019
  • Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J (2020) Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev. 57:100994. https://doi.org/10.1016/j.arr.2019.100994
  • Yang XD, Qian YW, Xu SQ, Wan DY, Sun FH, Chen SD, Xiao Q (2018) Expression of the gene coading for PGC-1α in peripheral blood leukocytes and related gene variants in patients with Parkinson's disease. Parkinsonism & Related Dis. 51:30-5. https://doi.org/10.1016/j.parkreldis.2018.02.037
  • Zarbakhsh S, Safari M, Aldaghi MR, Sameni HR, Ghahari L, Khaleghi Lagmouj Y, Rahimi Jaberi K, Parsaie H (2019) Irisin protects the substantia nigra dopaminergic neurons in the rat model of Parkinson's disease. Iran J Basic Med Sci. 22(7):722-28. https://doi.org/10.22038/ijbms.2019.33444.7987
  • Zhang D, Tan X, Tang N, Huang F, Chen Z, Shi G (2020) Review of Research on the Role of Irisin in Tumors. Onco Targets Ther. 2020(13):4423-30. https://doi.org/10.2147/OTT.S245178
  • Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D (2017) Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res. 1665:1-21. https://doi.org/10.1016/j.brainres.2017.03.029

Parkinson Hastalığında Plazma PGC1-α, İrisin, BDNF, GAL ve GALP Düzeylerinin İncelenmesi

Yıl 2021, , 145 - 161, 30.08.2021
https://doi.org/10.51754/cusbed.948015

Öz

Transkripsiyon kofaktör peroksizom proliferatör 1-alfa (PGC1-α), irisin, beyin kaynaklı nörotrofik faktör (BDNF), galanin (GAL) ve galanin benzeri peptit (GALP) gibi yeni peptitlerin Parkinson Hastalığı (PH)’ndaki rolleri, tam olarak bilinmemektedir. Bu çalışmada, PH’nın patofizyolojisini etkileyebilecek yeni peptitlerin plazma seviyeleri incelendi. Bu çalışma kesitsel olarak gerçekleştirilmiştir. Çalışma, 45 yeni tanı almış idiyopatik Parkinson hastası ve 45 sağlıklı birey olmak üzere iki gruptan oluşturuldu. Gruplardan toplanan plazma örneklerindeki peptit seviyeleri ELISA yöntemi ile ölçüldü. Her iki grubun yaş ortalaması 65 yaşın üzerinde ve gruplar arasındaki yaş farkı istatistiksel olarak anlamsızdı. Gruplar arasındaki plazma PGC1-α, irisin, BDNF, GAL ve GALP median düzeyleri incelendiğinde; kontrol grubuna (sırasıyla 5.98 [4.99-7.03] ng/mL, 18.77 [15.01- 20.53] ng/mL, 4.39 [3.70-4.95] ng/mL, 21.32 [16.70-25.87] ng/L ve 48.92 [28.66-69.68] pg/mL) göre, hasta grubunda median düzeylerinin (sırasıyla 3.38 [2.60-4.43] ng/mL, 12.77 [9.70-15.04] ng/mL, 1.61 [1.35-2.01] ng/mL, 15.46 [12.98-17.77] ng/L ve 47.68 [32.5-65.86] pg/mL) düşük olduğu tespit edildi (BDNF düzeyleri için p<0.01, GALP için p>0.05, diğer peptit düzeyleri için p<0.05). Plazma BDNF düzeyleri ile GAL ve irisin arasında pozitif yönde anlamlı düşük korelasyonlar (sırasıyla, r=0.348; p=0.001, r=0.271; p=0.011), plazma PGC1-α düzeyleri ile BDNF, irisin ve GAL arasında ise pozitif yönde anlamlı orta düzeyde korelasyonlar saptandı (sırasıyla, r=0.685, r=0.424 ve r=0.532; p değerleri tümü için p≤0.001). Yaş ile BNDF düzeyleri arasında ise negatif anlamlı korelasyon bulundu (p=0.040; r=-0.225). Bu çalışma bildiğimiz kadarıyla PH ile ilişkili bahsi geçen peptidlerin birlikte incelendiği literatürdeki ilk rapordur. Bu peptidlerin PH’deki rollerinin ve mekanizmalarının aydınlatılması adına gelecekte daha detaylı çalışmalara ihtiyaç olduğunu düşünmekteyiz.

Proje Numarası

2019-TS-62

Kaynakça

  • Agarwal S, Yadav A, Chaturvedi RK (2017) Peroxisome proliferator-activated receptors as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun. 483(4):1166-77. https://doi.org/10.1016/j.bbrc.2016.08.043
  • Akbayır E, Sen M, Ay U, Senyer S, Tuzun E, Kucukali Cİ (2017) Etiopathogenesis of parkinson’s disease. Experimed. 7(13):1-23.
  • Bost F, Kaminski L (2019) The metabolic modulator PGC-1α in cancer. Am J Cancer Res. 9(2):198-211. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405967/
  • Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 481:463-68. https://doi.org/10.1038/nature10777
  • Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 21(3):396-413. https://doi.org/10.1089/ars.2014.5851
  • Cheng A, Wan R, Yang JL, Kamimura N, Son TG, Ouyang X, Luo Y, Okun E, Mattson MP (2012) Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun. 3:1250. https://doi.org/10.1038/ncomms2238
  • Choi YK, Kim MK, Bae KH, Seo HA, Jeong JY, Lee WK, Kim JG, Lee IK, Park KG (2013) Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract. 100(1):96-101. https://doi.org/10.1016/j.diabres.2013.01.007 Counts SE, Perez SE, Ginsberg SD, Mufson EJ (2010) Neuroprotective role for galanin in Alzheimer's disease. Exp Suppl. 102:143-62. https://doi.org/10.1007/978-3-0346-0228-0_11
  • de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR, da Luz Scheffer D, Aguiar AS Jr (2019) The role of PGC-1α/UCP2 signaling in the beneficial effects of physical exercise on the brain. Front Neurosci. 13:292. https://doi.org/10.3389/fnins.2019.00292
  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 2013;3(4):461-91. https://doi.org/10.3233/JPD-130230
  • Eschbach J, von Einem B, Müller K, Bayer H, Scheffold A, Morrison BE, Rudolph KL, Thal DR, Witting A, Weydt P, Otto M, Fauler M, Liss B, McLean PJ, Spada AR, Ludolph AC, Weishaupt JH, Danzer KM (2015) Mutual exacerbation of peroxisome proliferator-activated receptor gamma coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol. 77(1):15–32. https://doi.org/10.1002/ana.24294
  • Falkenstetter S, Leitner J, Brunner SM, Rieder TN, Kofler B, Weis S (2020) Galanin System in Human Glioma and Pituitary Adenoma. Front. Endocrinol. 11:155. https://doi.org/10.3389/fendo.2020.00155
  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology. 17(5): 427–42. https://doi.org/10.1212/wnl.17.5.427
  • Huang Y, Huang C, Yun W (2019) Peripheral BDNF/TrkB protein expression is decreased in Parkinson's disease but not in Essential tremor. J Clin Neurosci. 63:176-81. https://doi.org/10.1016/j.jocn.2019.01.017
  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease. A clinico-pathological study of 100 cases. JNNP. 55:181-84. https://doi.org/10.1136/jnnp.55.3.181
  • Jin Y, Sumsuzzman DM, Choi J, Kang H, Lee SR, Hong Y (2018) Molecular and functional ınteraction of the myokine ırisin with physical exercise and alzheimer's disease. Molecules. 23(12):3229. https://doi.org/10.3390/molecules23123229
  • Kalia LV, Lang AE (2015) Parkinson's disease. Lancet. 386(9996):896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
  • Kim OY, Song J (2018) The Role of Irisin in Alzheimer's Disease. J Clin Med. 7(11):407. https://doi.org/10.3390/jcm7110407
  • Lang R, Berger A, Santic R, Geisberger R, Hermann A, Herzog H, Kofler B (2005) Pharmacological and functional characterization of galanin-like peptide fragments as potent galanin receptor agonists.Neuropeptides. 39(3):179-84. https://doi.org/10.1016/j.npep.2004.12.015
  • Lang R, Gundlach AL, Kofler B (2007) The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther. 115(2):177-207. https://doi.org/10.1016/j.pharmthera.2007.05.009
  • Lee SH, Lee JH, Lee HY, Min KJ (2019) Sirtuin signaling in cellular senescence and aging. BMB Rep. 52(1):24-34. https://doi.org/10.5483/BMBRep.2019.52.1.290
  • Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, Ricart W, Fernández-Real JM (2013) Irisin Is Expressed and Produced by Human Muscle and Adipose Tissue in Association With Obesity and Insulin Resistance. J Clin Endocrinol Metab. 98(4): E769–78. https://doi.org/10.1210/jc.2012-2749
  • Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC (2019) Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer's Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci. 20(2):257. https://doi.org/10.3390/ijms20020257
  • Ohtaki T, Kumano S, Ishibashi Y, Ogi K, Matsui H, Harada M, Kitada C, Kurokawa T, Onda H, Fujino M (1999) Isolation and cDNA Cloning of a Novel Galanin-like Peptide (GALP) from Porcine Hypothalamus. J Biol Chem. 274(52):37041–45. https://doi.org/10.1074/jbc.274.52.37041
  • Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G (2020) BDNF as a promising therapeutic agent in parkinson's disease. Int J Mol Sci. 21(3):1170. https://doi.org/10.3390/ijms21031170
  • Parkinson J (2002) An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci. 14(2):223-36. https://doi.org/10.1176/jnp.14.2.223
  • Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 83:84–92. https://doi.org/10.1016/j.yexmp.2006.09.008
  • Rabiee F, Lachinani L, Ghaedi S, Nasr-Esfahani MH, Megraw TL, Ghaedi K (2020) New insights into the cellular activities of Fndc5/Irisin and its signaling pathways. Cell Biosci. 10:51. https://doi.org/10.1186/s13578-020-00413-3
  • Shioda S, Kageyama H, Takenoya F, Shiba K (2011) Galanin-like peptide: a key player in the homeostatic regulation of feeding and energy metabolism? Int J Obes (Lond). 35:619-28. https://doi.org/10.1038/ijo.2010.202
  • Siuda J, Patalong-Ogiewa M, Żmuda W, Targosz-Gajniak M, Niewiadomska E, Matuszek I, Jędrzejowska-Szypułka H, Lewin-Kowalik J, Rudzińska-Bar M (2017) Cognitive impairment and BDNF serum levels. Neurol Neurochir Pol. 51(1):24-32. https://doi.org/10.1016/j.pjnns.2016.10.001
  • Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, Nishida M, Song L, Wang D, Federoff HJ (2015) PGC-1α Promoter Methylation in Parkinson's Disease. PloS one. 10(8):e0134087. https://doi.org/10.1371/journal.pone.0134087
  • Tatemoto K, Rökaeus A, Jörnvall H, McDonald TJ, Mutt V (1983) Galanin - a novel biologically active peptide from porcine intestine. FEBS Lett. 164(1):124–28. https://doi.org/10.1016/0014-5793(83)80033-7
  • Wrann CD (2015) FNDC5/irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plast. 1(1):55-61. https://doi.org/10.3233/BPL-150019
  • Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J (2020) Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev. 57:100994. https://doi.org/10.1016/j.arr.2019.100994
  • Yang XD, Qian YW, Xu SQ, Wan DY, Sun FH, Chen SD, Xiao Q (2018) Expression of the gene coading for PGC-1α in peripheral blood leukocytes and related gene variants in patients with Parkinson's disease. Parkinsonism & Related Dis. 51:30-5. https://doi.org/10.1016/j.parkreldis.2018.02.037
  • Zarbakhsh S, Safari M, Aldaghi MR, Sameni HR, Ghahari L, Khaleghi Lagmouj Y, Rahimi Jaberi K, Parsaie H (2019) Irisin protects the substantia nigra dopaminergic neurons in the rat model of Parkinson's disease. Iran J Basic Med Sci. 22(7):722-28. https://doi.org/10.22038/ijbms.2019.33444.7987
  • Zhang D, Tan X, Tang N, Huang F, Chen Z, Shi G (2020) Review of Research on the Role of Irisin in Tumors. Onco Targets Ther. 2020(13):4423-30. https://doi.org/10.2147/OTT.S245178
  • Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D (2017) Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res. 1665:1-21. https://doi.org/10.1016/j.brainres.2017.03.029
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Fatih Gül 0000-0002-9828-1298

Caner Yıldırım 0000-0003-0091-9925

Can Erdoğan 0000-0003-1228-5181

Özlem Gül 0000-0003-1236-0348

İrem Arslantürk 0000-0001-9760-4246

Proje Numarası 2019-TS-62
Yayımlanma Tarihi 30 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Gül, H. F., Yıldırım, C., Erdoğan, C., Gül, Ö., vd. (2021). Investigation of Plasma PGC1-α, Irisin, BDNF, GAL, and GALP Levels in Parkinson’s Disease. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 6(2), 145-161. https://doi.org/10.51754/cusbed.948015

   ici2.png    logo.png        asos-index.png       crossref-logo-landscape-200.png     logo.png       search-result-logo-horizontal-TEST.jpg 

     

logo.png    scilit.jpg     goole_scholar.jpg       logo.png    logo.png


f9ab67f.png                    download