Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Human Maxilla and Mandible Trabecular Microstructure with Micro-Computed Tomography

Yıl 2023, Cilt: 20 Sayı: 1, 67 - 73, 27.04.2023
https://doi.org/10.35440/hutfd.1253254

Öz

ÖZ
Amaç: Maksilla ve mandibulanın trabeküler mikromimarisini mikrobilgisayarlı tomografi (mikro-BT) kullanarak değerlendirmek.
Materyal ve metod: Yirmi adet maksiller ve mandibula kadavra örneği, mikro BT kullanılarak tarandı. Numuneler Skyscan 1275® micro-CT sistemi (SkyScan, Kontich, Belçika) kullanılarak aşağıdaki parametrelerle tarandı. Tarama verileri CTan yazılımına aktarıldı ve analiz edildi. Morfometrik parametreler; doku hacmi (DH), Kemik hacmi (KH), kemik hacmi yüzdesi (KH/DH), doku yüzeyi (DY), kemik yüzeyi (KY), kesişme yüzeyi (KY), kemik yüzeyi/hacim oranı (KY/KH), kemik yüzey yoğunluğu (BS/TV), trabeküler patern faktörü (Tb.Pf), yapı modeli indeksi (YMI), trabeküler kalınlık (Tb. Th), trabeküler ayrılma (Tb. Sp), trabeküler sayı (Tb.N) ve anizotropi derecesi (DA), CTAnalyzer yazılımı kullanılarak değerlendirildi. İstatistiksel anlamlılık p<0.05 olarak ayarlandı.
Bulgular: BV/TV, Tb.Th, Tb. KIBT görüntülerinde Sp ve DA değerleri mikro-BT görüntülerine göre daha yüksek iken, Tb. CBCT görüntülerinde N değeri, mikro BT görüntülerinden daha düşüktü. BV/TV ve DA parametreleri, CBCT ve mikro-CT cihazları arasında en yüksek uyumu gösterdi (BV/TV için ICC=0,421 ve DA için ICC=0,439, p<0,01).
Sonuç: En küçük voksel boyutunda elde edilen CBCT'de ölçülen BV/TV ve DA parametrelerinin maksiller trabeküler mikroyapının değerlendirilmesinde yararlı olduğu bulundu.
Anahtar Kelimeler: Mikro bilgisayarlı tomografi, trabeküler kemik mikro yapısı, Maxilla, Mandibula.

Kaynakça

  • 1. Lakatos E, Magyar L, Bojtár I, Material Properties of the Mandibular Trabecular Bone. Journal of Medical Enginee-ring 2014 Article ID 470539 http://dx.doi.org/10.1155/2014/470539
  • 2. Nkenke E, Hahn M, Weinzierl K, Radespiel-Tröger M, Wil-helm Neukam F, Engelke K. Implant stability and histo-morphometry: a correlation study in human cadavers using stepped cylinder implants, Clin Oral Implants Res; 2003;14(5):601-9.
  • 3. Miyamoto I, Tsuboi Y, Wada E, Suwa H, Tadahiko Iizuka T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery--clinical, prospecti-ve, biomechanical, and imaging study. Bone. 2005;37( 6): 776-780.
  • 4. Heinemann F, Hasan I, Bourauel C, Biffar R, Mundt T. Bone stability around dental implants: Treatment related factors. 2015, 199;3-8.
  • 5. Javed F, Romanos GE. The role of primary stability for suc-cessful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20
  • 6. Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomec-hanical aspects and clinical implications. Periodontol 2008; 47:51–66.
  • 7. Açıkgöz A. K, Morphometric Evaluation, Locational Relati-onship, and Surgical Significance of the Maxillofacial Region Landmarks, ınternatıonal journal of morphology. 2021; 39: 5: 1289-1295.
  • 8. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  • 9. Turkyilmaz I, Ozan O, Yilmaz B, Ersoy AE. Determination of bone quality of 372 implant recipient sites using Hounsfield unit from computerized tomography: a clinical study. Clin Implant Dent Relat Res 2008;10:238–244.
  • 10. Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent 2009;18:480-5.
  • 11. Rozé J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoorna-ert A, Layrolle P. Correlating implant stability to bone struc-ture. Clin Oral Implants Res 2009;20:1140-5.
  • 12. Se-Ryong Kang, Sung-Chul Bok , Soon-Chul Choi , Sam-Sun Lee , Min-Suk Heo, Kyung-Hoe Huh et all. The relationship between dental implant stability and trabecular bone struc-ture using cone-beam computed tomography,J Periodontal Implant Sci, 2016;46(2):116-27.
  • 13. Hsu JT, Huang HL, Tsai MT, Wu AY, Tu MG, Fuh LJ. Effects of the 3D bone-to-implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses. Int J Oral Maxillofac Surg 2013;42:276-80.
  • 14. Moon HS, Won YY, Kim JY. KD, Ruprecht A. HJ, Kook HK et all. The three-dimensional microstructure of the trabecular bone in the mandible, Surg Radiol Anat., 2004; 26: 466–73.
  • 15. Akca K., Chang T L., Tekdemir İ., Fanuscu Mete I. Biomec-hanical aspects of initial intraosseous stability and implant design: a quantitative micromorphometric analysis. Clin. Oral Impl. Res., 2006; 17: 465–72.
  • 16. Kulah K., Gulsahi A., Kamburoğlu K., Geneci F., Ocak M., Celik H H., Ozen T, Evaluation of maxillary trabecular mic-rostructure as an indicator of implant stability by using 2 co-ne beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiology, 2019;127(3):247-256
  • 17. Raúl González‐García., Monje F., The reliability of cone‐beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro‐CT, Clin. Oral Impl. Res., 2013; 24: 871–879.
  • 18. Panmekiate S., Ngonphloy N., Charoenkarn T., Faruang-saeng T., Pauwels R., Comparison of mandibular bone mic-roarchitecture between micro-CT and CBCT images, Den-tomaxillofac. Radiol, 2015;44:1-7.
  • 19. Parsa A, Ibrahim N, Hassan B, Stelt PVD, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clinical oral Implants rese-arch, 2015; 26(1)1-7. https://doi.org/10.1111/clr.12315
  • 20. Fanuscu M.I, Chang T L, Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible, Clin. Oral Impl. Res., 2004; 15: 213–218.
  • 21. Oliveira De, Leles CR, Lindh C, Ribeiro Rotta RF. Bone tissue microarchitectural characteristics at dental implant sites. Part 1: Identification of clinical related parameters. Clin. Oral Impl. Res. 2012; 23; 981–986 doi: 10.1111/j.1600-0501.2011.02243.x
  • 22. Blok Y, Gravesteijn FA, Ruijven LJV, Koolstra JH. Micro-architecture and mineralization of the human alveolar bone obtained with microCT. archives of oral biology, 2013: 58; 621–627.
  • 23. Kim JY, Henkin J., Micro-Computed Tomography Assess-ment of Human Alveolar Bone: Bone Density and Three-Dimensional Micro-Architecture, Clinical Implant Dentistry and Related Research, 2015; 17 (2): 307-313.
  • 24. Luu N. S, Mandich MA, Flores-Mir C, El-Bialy T, Heo G, Carey JP, Major P.W.. The validity, reliability, and time requirement of study model analysis using cone-beam computed tomography–generated virtual study models. Orthodontics Craniofacial, 2013; 17(1); 14-26 https://doi.org/10.1111/ocr.12024
  • 25. Vinci R, Rebaudi A, Capparè P, Gherlone E. Microcomputed and histologic evaluation of calvarial bone grafts: a pilot study in humans, Int J Periodontics Restorative Dent, 2011;31(4):29-36.
  • 26. Jiang Y, Zhao J, Liao EY, Dai RC, Wu XP, Genant HK. Applica-tion of micro-CT assessment of 3-D bone micro-structure in preclinical and clinical studies. J Bone Miner Metab 2005; 23:122–131.
  • 27. Ito M. Assessment of bone quality using micro-computed tomography (micro-CT) and synchrotron micro-CT. J Bone Miner Metab 2005; 23(Suppl):115–121.
  • 28. Stauber M, Müller R. Micro-computed tomography: a met-hod for the non-destructive evaluation of the three-dimensional structure of biological specimens. In: Westen-dorf J, ed. Methods in molecular biology, osteoporosis: methods and protocols methods in molecular biology. To-towa, NJ: Humana Press, 2008:273–292.
  • 29. Ding M., Hvid I, Quantification of age-related changes in the structure model type and trabecular thickness of human ti-bial cancellous bone. Bone, 2000; 26:291–295.

İnsan Maksilla ve Mandibula Trabeküler Mikro Yapısının Mikro Bilgisayarlı Tomografi ile İncelenmesi

Yıl 2023, Cilt: 20 Sayı: 1, 67 - 73, 27.04.2023
https://doi.org/10.35440/hutfd.1253254

Öz

ÖZ
Amaç: Maksilla ve mandibulanın trabeküler mikromimarisini mikrobilgisayarlı tomografi (mikro-BT) kullanarak değerlendirmek.
Materyal ve metod: Yirmi adet maksiller ve mandibula kadavra örneği, mikro BT kullanılarak tarandı. Numuneler Skyscan 1275® micro-CT sistemi (SkyScan, Kontich, Belçika) kullanılarak aşağıdaki parametrelerle tarandı. Tarama verileri CTan yazılımına aktarıldı ve analiz edildi. Morfometrik parametreler; doku hacmi (DH), Kemik hacmi (KH), kemik hacmi yüzdesi (KH/DH), doku yüzeyi (DY), kemik yüzeyi (KY), kesişme yüzeyi (KY), kemik yüzeyi/hacim oranı (KY/KH), kemik yüzey yoğunluğu (BS/TV), trabeküler patern faktörü (Tb.Pf), yapı modeli indeksi (YMI), trabeküler kalınlık (Tb. Th), trabeküler ayrılma (Tb. Sp), trabeküler sayı (Tb.N) ve anizotropi derecesi (DA), CTAnalyzer yazılımı kullanılarak değerlendirildi. İstatistiksel anlamlılık p<0.05 olarak ayarlandı.
Bulgular: BV/TV, Tb.Th, Tb. KIBT görüntülerinde Sp ve DA değerleri mikro-BT görüntülerine göre daha yüksek iken, Tb. CBCT görüntülerinde N değeri, mikro BT görüntülerinden daha düşüktü. BV/TV ve DA parametreleri, CBCT ve mikro-CT cihazları arasında en yüksek uyumu gösterdi (BV/TV için ICC=0,421 ve DA için ICC=0,439, p<0,01).
Sonuç: En küçük voksel boyutunda elde edilen CBCT'de ölçülen BV/TV ve DA parametrelerinin maksiller trabeküler mikroyapının değerlendirilmesinde yararlı olduğu bulundu.

Kaynakça

  • 1. Lakatos E, Magyar L, Bojtár I, Material Properties of the Mandibular Trabecular Bone. Journal of Medical Enginee-ring 2014 Article ID 470539 http://dx.doi.org/10.1155/2014/470539
  • 2. Nkenke E, Hahn M, Weinzierl K, Radespiel-Tröger M, Wil-helm Neukam F, Engelke K. Implant stability and histo-morphometry: a correlation study in human cadavers using stepped cylinder implants, Clin Oral Implants Res; 2003;14(5):601-9.
  • 3. Miyamoto I, Tsuboi Y, Wada E, Suwa H, Tadahiko Iizuka T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery--clinical, prospecti-ve, biomechanical, and imaging study. Bone. 2005;37( 6): 776-780.
  • 4. Heinemann F, Hasan I, Bourauel C, Biffar R, Mundt T. Bone stability around dental implants: Treatment related factors. 2015, 199;3-8.
  • 5. Javed F, Romanos GE. The role of primary stability for suc-cessful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20
  • 6. Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomec-hanical aspects and clinical implications. Periodontol 2008; 47:51–66.
  • 7. Açıkgöz A. K, Morphometric Evaluation, Locational Relati-onship, and Surgical Significance of the Maxillofacial Region Landmarks, ınternatıonal journal of morphology. 2021; 39: 5: 1289-1295.
  • 8. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  • 9. Turkyilmaz I, Ozan O, Yilmaz B, Ersoy AE. Determination of bone quality of 372 implant recipient sites using Hounsfield unit from computerized tomography: a clinical study. Clin Implant Dent Relat Res 2008;10:238–244.
  • 10. Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent 2009;18:480-5.
  • 11. Rozé J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoorna-ert A, Layrolle P. Correlating implant stability to bone struc-ture. Clin Oral Implants Res 2009;20:1140-5.
  • 12. Se-Ryong Kang, Sung-Chul Bok , Soon-Chul Choi , Sam-Sun Lee , Min-Suk Heo, Kyung-Hoe Huh et all. The relationship between dental implant stability and trabecular bone struc-ture using cone-beam computed tomography,J Periodontal Implant Sci, 2016;46(2):116-27.
  • 13. Hsu JT, Huang HL, Tsai MT, Wu AY, Tu MG, Fuh LJ. Effects of the 3D bone-to-implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses. Int J Oral Maxillofac Surg 2013;42:276-80.
  • 14. Moon HS, Won YY, Kim JY. KD, Ruprecht A. HJ, Kook HK et all. The three-dimensional microstructure of the trabecular bone in the mandible, Surg Radiol Anat., 2004; 26: 466–73.
  • 15. Akca K., Chang T L., Tekdemir İ., Fanuscu Mete I. Biomec-hanical aspects of initial intraosseous stability and implant design: a quantitative micromorphometric analysis. Clin. Oral Impl. Res., 2006; 17: 465–72.
  • 16. Kulah K., Gulsahi A., Kamburoğlu K., Geneci F., Ocak M., Celik H H., Ozen T, Evaluation of maxillary trabecular mic-rostructure as an indicator of implant stability by using 2 co-ne beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiology, 2019;127(3):247-256
  • 17. Raúl González‐García., Monje F., The reliability of cone‐beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro‐CT, Clin. Oral Impl. Res., 2013; 24: 871–879.
  • 18. Panmekiate S., Ngonphloy N., Charoenkarn T., Faruang-saeng T., Pauwels R., Comparison of mandibular bone mic-roarchitecture between micro-CT and CBCT images, Den-tomaxillofac. Radiol, 2015;44:1-7.
  • 19. Parsa A, Ibrahim N, Hassan B, Stelt PVD, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clinical oral Implants rese-arch, 2015; 26(1)1-7. https://doi.org/10.1111/clr.12315
  • 20. Fanuscu M.I, Chang T L, Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible, Clin. Oral Impl. Res., 2004; 15: 213–218.
  • 21. Oliveira De, Leles CR, Lindh C, Ribeiro Rotta RF. Bone tissue microarchitectural characteristics at dental implant sites. Part 1: Identification of clinical related parameters. Clin. Oral Impl. Res. 2012; 23; 981–986 doi: 10.1111/j.1600-0501.2011.02243.x
  • 22. Blok Y, Gravesteijn FA, Ruijven LJV, Koolstra JH. Micro-architecture and mineralization of the human alveolar bone obtained with microCT. archives of oral biology, 2013: 58; 621–627.
  • 23. Kim JY, Henkin J., Micro-Computed Tomography Assess-ment of Human Alveolar Bone: Bone Density and Three-Dimensional Micro-Architecture, Clinical Implant Dentistry and Related Research, 2015; 17 (2): 307-313.
  • 24. Luu N. S, Mandich MA, Flores-Mir C, El-Bialy T, Heo G, Carey JP, Major P.W.. The validity, reliability, and time requirement of study model analysis using cone-beam computed tomography–generated virtual study models. Orthodontics Craniofacial, 2013; 17(1); 14-26 https://doi.org/10.1111/ocr.12024
  • 25. Vinci R, Rebaudi A, Capparè P, Gherlone E. Microcomputed and histologic evaluation of calvarial bone grafts: a pilot study in humans, Int J Periodontics Restorative Dent, 2011;31(4):29-36.
  • 26. Jiang Y, Zhao J, Liao EY, Dai RC, Wu XP, Genant HK. Applica-tion of micro-CT assessment of 3-D bone micro-structure in preclinical and clinical studies. J Bone Miner Metab 2005; 23:122–131.
  • 27. Ito M. Assessment of bone quality using micro-computed tomography (micro-CT) and synchrotron micro-CT. J Bone Miner Metab 2005; 23(Suppl):115–121.
  • 28. Stauber M, Müller R. Micro-computed tomography: a met-hod for the non-destructive evaluation of the three-dimensional structure of biological specimens. In: Westen-dorf J, ed. Methods in molecular biology, osteoporosis: methods and protocols methods in molecular biology. To-towa, NJ: Humana Press, 2008:273–292.
  • 29. Ding M., Hvid I, Quantification of age-related changes in the structure model type and trabecular thickness of human ti-bial cancellous bone. Bone, 2000; 26:291–295.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Handan Soysal 0000-0001-7550-6362

Ferhat Geneci 0000-0002-5039-4664

Mert Ocak 0000-0001-6832-6208

Erken Görünüm Tarihi 27 Nisan 2023
Yayımlanma Tarihi 27 Nisan 2023
Gönderilme Tarihi 19 Şubat 2023
Kabul Tarihi 20 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 20 Sayı: 1

Kaynak Göster

Vancouver Soysal H, Geneci F, Ocak M. Investigation of the Human Maxilla and Mandible Trabecular Microstructure with Micro-Computed Tomography. Harran Üniversitesi Tıp Fakültesi Dergisi. 2023;20(1):67-73.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty