BibTex RIS Cite

Çinkonun Laktat Dehidrogenaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi

Year 2017, Volume: 2 Issue: 1, 52 - 58, 01.08.2017

Abstract



                  Çinko, vücuda dışarıdan alınan
inorganik bir maddedir ve enzimlerin aktivitelerini düzenlemesi, proteinlerin
yapılarına katılıp stabilizasyonlarını sağlaması ve gen ifadesini kontrol
etmesi nedeniyle organizmada önemli rollere sahiptir. Bu çalışmada çinko
sülfatın, glikolizin son basamağında yer alan laktat dehidrogenaz enziminin
aktivitesine in vitro etkisinin incelenmesi amaçlanmıştır. Çinko’ nun laktat
dehidrogenaz aktivitesi üzerine etkisini incelemek amacıyla; 1mg/ml, 0.5mg/ml
ve 0.25mg/ml derişimine sahip 3 farklı derişimdeki çinko sülfat varlığında
laktat dehidrogenaz ortama ilave edilmiş ve 5 farklı substrat(piruvat)
derişiminde aktivite değerleri spektrofotometrik olarak belirlenmiştir. Km ve
Vmax değerleri saptanmıştır. Laktat dehidrogenazın Vmax değeri 1.43 µmol
piruvat/mg protein/dakika, Km değeri 32.57 mM olarak hesaplanmıştır. Tepkime
ortamına 1, 0.5 ve 0.25 mg/ml çinko sülfat eklendiğinde laktat dehidrogenaz
enzimin sırasıyla %81.2, 77.7 ve 70.7 oranında inhibe olduğu tespit edilmiştir.
Sonuç olarak, çinko sülfat derişimindeki artışın, enzimin hem Km hem de Vmax
değerlerinde önemli bir azalmaya neden olduğu ve substrat derişiminin
arttırılsa bile enzim inhibisyonun devam ettiği tespit edilmiştir. Bu durum da
inhibisyon tipinin unkompetetif inhibisyon olduğunu göstermektedir.




References

  • 1. Arcasoy A. Çinko ve çinko eksikliği. Ankara Talasemi Derneği Yayınları, 2. Baskı,1-23, 2002. 2. Vallee, B. L., & Auld, D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry, 29:24, 5647-5659, 1990. 3. Saner G. Mikroelementler (Çinko). Neyzi O, Ertuğrul T, Pediatri, 1. Cilt, 3. Baskı, İstanbul, 174-75, 2002. 4. Wacker, Warren EC, David D. Ulmer, and Bert L. Vallee. Metalloenzymes and myocardial infarction: Malic and lactic dehydrogenase activities and zinc concentrations in serum. New England journal of medicine, 255:10, 449-456, 1956. 5. Holbrook, J. J., Liljas, A., Steindel, S. J., & Rossmann, M. G. Lactate Dehydrogenase. The enzymes, 11, 191-292, 1975. 6. Hsieh, K. M., & Blumenthal, H. T. Serum Lactic Dehydrogenase Levels in Various Disease States. Proceedings of the Society for Experimental Biology and Medicine, 91:4, 626-630, 1956. 7. Boehringer and Mannheim: Biochemica information handbook, Hexokinase (p.113-114), Glucose-6-phosphate dehydrogenase (p.99-100), lactate dehydrogenase (p.121-122), malate dehydrogenase (p.124-125), 1973. 8. Berg JM, Shi Y. Th galvanization of biology: a grwing appreciation fort he roles of zinc. Science, 271(5252):1081-5, 1996. 9. Vallee BL, Faichuk KH. The biochemical basis of zinc phsiology. Physiol Rev, 73(1): 79-118, 1993. 10. Jahnson PE. Trace minerals and fertility in dairy cattle. (In) Biotechnology in the Feed Industry, Proceeding of Alltech’s !!th Annuel Symposium, Nottingham Universty Press, England. 287-291, 1995. 11. Habashi F: Handbook of Extractive Metallurgy. Vol 2, WILEY-VCH, Germany, 1997. 12. Trace Elements In Human Nutrition and Health. World Health Organization, Geneva, 1996. 13. Küchler W., Verlag CH. Chemischen Technology. ISBN 3-446-13182-5, Wien, 1986. 14. Bala Ju M, Plotko SA. In: Trudy IV Vsesojuznogo S’ezda Patologoanatomov. Ki. İnev, Moscow, Medicina, 1965. 15. Racininskij ID. In: Trudy IV Vsesojuznogo S’ezda Patologoanatomov, K Moscow, Medicina, p. 71-71, 1967 16. Sosunov AV, Malik Ju S. In: Trudy IV Vsesojuznogo S’ezda Patologoanatomov, Kisinev Moscow, Medicina, p. 102-103, 1967. 17. Duncan EJ, Thompson MP, Phua SH. Zinc Prtection of HepG2 cells from sporidesmin toxicity dos not require de novo gene transcription. Toxicol Lett, 159: 164-172, 20015. 18. Prasad A, Bao B, Beck FW, Kucuk O, Sarkar FH. Antioxidant effectmof zinc in humans. Free Radic Biol Med, 37:1182-1190, 2004. 19. Daniels W, Hendricks J, Salie R, Van Rensburg SJ. A mechanism for zinc toxicity in neuroblastoma cells. Metab Brain Dis, 19:79-88, 2004. 20. Keller J, Owens CT, Lai JC, Devaud LL. The effects of 17β-estradiol and ethanol on zinc or manganese induced toxicity in SK-N-SH cells. Neurochemistry, 46:293-303, 2005. 21. Wintergest ES, Maggini S, Homig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab, 50:85-94, 2006. 22. Reardon CL, Lucas DO. Heavy mitogenesis: Zn++ and Hg++ induce cytotoxicity and interferon production in murine T lymphocytes, Immünobiology, 175:455-469, 1987. 23. Prasad AS, Meftah S, Abdallah J, Kaplan J, Brewer GJ, Bach JF, Dardenne M. Serum Thymulin in human zinc deficiency. J Clin Invest, 82: 1202-1210, 1988. 24. Vega-Robledo GB, Polo-Jimenez A, Morales-Martinez E, Rojas-Dotor S, Rico-Rosillo G. Effect of zinc upon human and murine cell viability and differentitation. Biol Trace Elem Res, 120: 133-140, 2007. 25. Johnesen Q, Eliasson R, Lofman CO. Inhibition of the gelatinolytic and esterolytic activity of human sperm acrosin by zinc. Acta Physiol Scan, 114: 457-476, 1982. 26. Akın V, Kaya N. Saflaştırılmış insan akrozini üzerine Zn+2 ve Ca+2 iyonlarının etkisi. Atatürk Üniversitesi Tıp Bülteni, 23(2): 439-444, 1991. 27. Sherman AR. Zinc, copper and Iron nutriture and immunity. J Nutr, 122: 604-609, 1992.
Year 2017, Volume: 2 Issue: 1, 52 - 58, 01.08.2017

Abstract

References

  • 1. Arcasoy A. Çinko ve çinko eksikliği. Ankara Talasemi Derneği Yayınları, 2. Baskı,1-23, 2002. 2. Vallee, B. L., & Auld, D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry, 29:24, 5647-5659, 1990. 3. Saner G. Mikroelementler (Çinko). Neyzi O, Ertuğrul T, Pediatri, 1. Cilt, 3. Baskı, İstanbul, 174-75, 2002. 4. Wacker, Warren EC, David D. Ulmer, and Bert L. Vallee. Metalloenzymes and myocardial infarction: Malic and lactic dehydrogenase activities and zinc concentrations in serum. New England journal of medicine, 255:10, 449-456, 1956. 5. Holbrook, J. J., Liljas, A., Steindel, S. J., & Rossmann, M. G. Lactate Dehydrogenase. The enzymes, 11, 191-292, 1975. 6. Hsieh, K. M., & Blumenthal, H. T. Serum Lactic Dehydrogenase Levels in Various Disease States. Proceedings of the Society for Experimental Biology and Medicine, 91:4, 626-630, 1956. 7. Boehringer and Mannheim: Biochemica information handbook, Hexokinase (p.113-114), Glucose-6-phosphate dehydrogenase (p.99-100), lactate dehydrogenase (p.121-122), malate dehydrogenase (p.124-125), 1973. 8. Berg JM, Shi Y. Th galvanization of biology: a grwing appreciation fort he roles of zinc. Science, 271(5252):1081-5, 1996. 9. Vallee BL, Faichuk KH. The biochemical basis of zinc phsiology. Physiol Rev, 73(1): 79-118, 1993. 10. Jahnson PE. Trace minerals and fertility in dairy cattle. (In) Biotechnology in the Feed Industry, Proceeding of Alltech’s !!th Annuel Symposium, Nottingham Universty Press, England. 287-291, 1995. 11. Habashi F: Handbook of Extractive Metallurgy. Vol 2, WILEY-VCH, Germany, 1997. 12. Trace Elements In Human Nutrition and Health. World Health Organization, Geneva, 1996. 13. Küchler W., Verlag CH. Chemischen Technology. ISBN 3-446-13182-5, Wien, 1986. 14. Bala Ju M, Plotko SA. In: Trudy IV Vsesojuznogo S’ezda Patologoanatomov. Ki. İnev, Moscow, Medicina, 1965. 15. Racininskij ID. In: Trudy IV Vsesojuznogo S’ezda Patologoanatomov, K Moscow, Medicina, p. 71-71, 1967 16. Sosunov AV, Malik Ju S. In: Trudy IV Vsesojuznogo S’ezda Patologoanatomov, Kisinev Moscow, Medicina, p. 102-103, 1967. 17. Duncan EJ, Thompson MP, Phua SH. Zinc Prtection of HepG2 cells from sporidesmin toxicity dos not require de novo gene transcription. Toxicol Lett, 159: 164-172, 20015. 18. Prasad A, Bao B, Beck FW, Kucuk O, Sarkar FH. Antioxidant effectmof zinc in humans. Free Radic Biol Med, 37:1182-1190, 2004. 19. Daniels W, Hendricks J, Salie R, Van Rensburg SJ. A mechanism for zinc toxicity in neuroblastoma cells. Metab Brain Dis, 19:79-88, 2004. 20. Keller J, Owens CT, Lai JC, Devaud LL. The effects of 17β-estradiol and ethanol on zinc or manganese induced toxicity in SK-N-SH cells. Neurochemistry, 46:293-303, 2005. 21. Wintergest ES, Maggini S, Homig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab, 50:85-94, 2006. 22. Reardon CL, Lucas DO. Heavy mitogenesis: Zn++ and Hg++ induce cytotoxicity and interferon production in murine T lymphocytes, Immünobiology, 175:455-469, 1987. 23. Prasad AS, Meftah S, Abdallah J, Kaplan J, Brewer GJ, Bach JF, Dardenne M. Serum Thymulin in human zinc deficiency. J Clin Invest, 82: 1202-1210, 1988. 24. Vega-Robledo GB, Polo-Jimenez A, Morales-Martinez E, Rojas-Dotor S, Rico-Rosillo G. Effect of zinc upon human and murine cell viability and differentitation. Biol Trace Elem Res, 120: 133-140, 2007. 25. Johnesen Q, Eliasson R, Lofman CO. Inhibition of the gelatinolytic and esterolytic activity of human sperm acrosin by zinc. Acta Physiol Scan, 114: 457-476, 1982. 26. Akın V, Kaya N. Saflaştırılmış insan akrozini üzerine Zn+2 ve Ca+2 iyonlarının etkisi. Atatürk Üniversitesi Tıp Bülteni, 23(2): 439-444, 1991. 27. Sherman AR. Zinc, copper and Iron nutriture and immunity. J Nutr, 122: 604-609, 1992.
There are 1 citations in total.

Details

Subjects Clinical Sciences
Journal Section Research Article
Authors

SEVTAP Bakır

SERKAN Kapancık

DENİZ Bakır

SERPİL Erşan

MUSTAFA DOĞAN Bedir

Publication Date August 1, 2017
Published in Issue Year 2017Volume: 2 Issue: 1

Cite

APA Bakır, S., Kapancık, S., Bakır, D., Erşan, S., et al. (2017). Çinkonun Laktat Dehidrogenaz Aktivitesi Üzerine İn Vitro Etkisinin İncelenmesi. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2(1), 52-58.

   ici2.png    logo.png        asos-index.png       crossref-logo-landscape-200.png     logo.png       search-result-logo-horizontal-TEST.jpg 

     

logo.png    scilit.jpg     goole_scholar.jpg       logo.png    logo.png