Kedilerin Yassı Hücreli Karsinomlarında İntermedier Filamentler, p53 Geni, Hücre Proliferasyonu, Metastaz ve Apoptozis
Year 2023,
Volume: 8 Issue: 2, 248 - 256, 31.08.2023
Emin Karakurt
,
Serpil Dağ
,
Özgür Aksoy
,
Enver Beytut
,
Celal Şahin Ermutlu
,
Ayfer Yıldız
,
Uğur Yıldız
,
Ersin Tanrıverdi
,
Hüseyin Koç
,
Mehmet Turan
Abstract
Bu çalışmada, kedi YHK'larının hücresel kökenini ortaya çıkarmak için intermedier filamentler, Pan Sitokeratin (Pan SK), Vimentin, Desmin ve S-100 değerlendirilmiştir. Tümör mikroçevresindeki kanserle ilişkili fibroblastlar (KAF'lar) için Alfa-Düz Kas Aktini (α-SMA) ve bir tümör baskılayıcı gen olan p53 araştırıldı. Prolifere Hücre Nükleus Antijeni (PCNA) ekspresyonu, hücre proliferasyon indeksi için değerlendirildi. Matriks Metalloproteinaz-9 (MMP-9) immünoreaktivitesi, metastaz ve istila kapasitesi açısından değerlendirildi. Ayrıca apoptoz mekanizması için proapoptotik Bax geni, antiapoptotik Bcl-2 geni, kaspaza bağımlı yol olan Kaspaz-3 ve kaspazdan bağımsız yol olan Apoptoz İndükleyici Faktör (AIF) ekspresyonlarının ortaya çıkarılması amaçlanmaktadır. Bu çalışmada Patoloji Anabilim Dalı'na rutin histopatolojik inceleme için getirilen 7 kediden alınan biyopsi örnekleri kullanıldı. Tümör dokusu örnekleri %10'luk formaldehit solüsyonunda fikse edildi. Rutin doku takip işlemlerinden sonra hazırlanan parafin bloklardan 5 µm kalınlığında seri kesitler alındı. Kesitler üzerinde Hematoksilen & Eozin (H&E) boyaması yapıldı. İmmünohistokimyasal boyama olarak avidin-Biotin Peroksidaz-Tekniği (ABC) kullanıldı. Tümörlerin epitelyal-mezenkimal geçişe sahip olduğu, çok yüksek proliferasyon indeksi sergilediği, p53 mutasyonuna sahip olduğu ve düşük metastaz/yüksek invazyon kapasitesi gösterdiği belirlendi. Bax/Bcl-2 oranının proapoptotik Bax lehine arttığı ve kaspazdan bağımsız apoptozun kaspaz bağımlı apoptozdan daha baskın olduğu ortaya çıktı.
References
- Altamura, G., Corteggio, A., Pacini, L., Conte, A., Pierantoni, G. M., Tommasino, M., Accardi, R., & Borzacchiello, G (2016). Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo. Virology, 496, 1-8. https://doi.org/10.1016/j.virol.2016.05.017
- Altamura, G., Degli Uberti, B., Galiero, G., De Luca, G., Power, K., Licenziato, L., Maiolino, P., & Borzacchiello, G (2021). The small molecule BIBR1532 exerts potential anti-cancer activities in preclinical models of feline oral squamous cell carcinoma through inhibition of telomerase activity and down-regulation of TERT. Frontiers in Veterinary Science, 7, 620776. https://doi.org/10.3389/fvets.2020.620776
- Altamura, G., Power, K., Martano, M., Degli Uberti, B., Galiero, G., De Luca, G., Maiolino, P., & Borzacchiello, G (2018). Felis catus papillomavirus type-2 E6 binds to E6AP, promotes E6AP/p53 binding and enhances p53 proteasomal degradation. Scientific Reports, 8(1), 17529. https://doi.org/10.1038/s41598-018-35723-7
- Barbosa, F. M. S., Santos, JdeJCdos., Gois, DDde., Costa Lima, Rda., Souza, MdeFde., Silva Lima, LHda., Souza E Silva, AAde., & Lucena, RBde (2019). Squamous cell carcinoma of the lung with small intestine metastasis in cat. Acta Scientiae Veterinariae, 47, 406. https://doi.org/10.22456/1679-9216.94711
- da Conceicao, M. E. B. A. M., Martins, D. M., Bertolo, P. H. L., Bezerra, D. K. D., da Silva, C. D. C. F., de Aguirra, L. R. V. M., Vasconcelos, R.D., & Pereira, W. L. A. (2016). Squamous cell carcinoma in third eyelid of cat. Acta Scientiae Veterinariae, 44(Suppl 1), 170. https://doi.org/10.22456/1679-9216.82863
- Dos Anjos, D. S., Bueno, C., Magalhães, L. F., Magalhães, G. M., Mattos-Junior, E., Pinto, M. M. R., De Nardi, A. B., Brunner, C. H. M., Leis-Filho, A. F., Calazans, S. G., & Fonseca-Alves, C. E Electrochemotherapy induces tumor regression and decreases the proliferative index in canine cutaneous squamous cell carcinoma. Scientific Reports, 9(1), 15819. https://doi.org/10.1038/s41598-019-52461-6
- Furusawa, Y., Takahashi, M., Shima-Sawa, M., Hatai, H., Miyoshi, N., Yamato, O., & Yabuki, A (2021). Immunocytochemical evaluation of epithelial-mesenchymal transition in epithelial tumors of dogs and cats. The Journal of Veterinary Medical Science, 83(9), 1363–1368. https://doi.org/10.1292/jvms.21-0021
- Gudenschwager-Basso, E. K., Stevenson, V., Sponenberg, D. P., Cecere, T. E., & Huckle, W. R. (2022). Characterization of the expression of angiogenic factors in cutaneous squamous cell carcinoma of domestic cats. Veterinary Sciences, 9(7), 375. https://doi.org/10.3390/vetsci9070375
- Harris, K., Gelberg, H. B., Kiupel, M., & Helfand, S. C. (2019). Immunohistochemical features of epithelial-mesenchymal transition in feline oral squamous cell carcinoma. Veterinary Pathology, 56(6), 826–839. https://doi.org/10.1177/0300985819859873
- Jankowski, M. K., Ogilvie, G. K., Lana, S. E., Fettman, M. J., Hansen, R. A., Powers, B. E., Mitchener, K. M., Lovett, S. D., Richardson, K. L., Parsley, L., & Walton, J. A. (2002). Matrix metalloproteinase activity in tumor, stromal tissue, and serum from cats with malignancies. Journal of Veterinary Internal Medicine 2002; 16 (1): 105–108. https://doi.org/10.1892/0891-6640(2002)016<0105:mmaits>2.3.co;2
- Kabak, Y. B., Sozmen, M., Devrim, A. K., Sudagidan, M., Yildirim, F., Guvenc, T., Yarim, M., Gulbahar, Y. M., Ahmed, I., Karaca, E., & Inal, S. (2020) Expression levels of angiogenic growth factors in feline squamous cell carcinoma. Acta Veterinaria Hungarica, 68(1), 37–48. https://doi.org/10.1556/004.2020.00005
- Karakurt, E., Nuhoğlu, H., Dağ, S., Çelebi, Ö., Büyük, F., Beytut, E., Yıldız, A., Kuru, M., & Akça, D. (2023) Immunohistochemical investigation of TNF-α and IFN-γ expressions in sheep fetuses with brucellosis. Pakistan Veterinary Journal, 43(1), 85-90. http://dx.doi.org/10.29261/pakvetj/2022.088
- Klobukowska, H. J., & Munday, J. S. (2016). High numbers of stromal cancer-associated fibroblasts are associated with a shorter survival time in cats with oral squamous cell carcinoma. Veterinary Pathology, 53(6), 1124–1130. https://doi.org/10.1177/0300985816629713
- Layne, E. A., & Graham, M. (2016). Cutaneous squamous cell carcinoma manifesting as follicular isthmus cysts in a cat. JFMS Open Reports, 2, 2055116915625356. https://doi.org/10.1177/2055116915625356
- Madewell, B. R., Gandour-Edwards, R., Edwards, B. F., Walls, J. E., & Griffey, S. M. (1999). Topographic distribution of bcl-2 protein in feline tissues in health and neoplasia. Veterinary Pathology, 36(6), 565–573. https://doi.org/10.1354/vp.36-6-565
- Madewell, B. R., Gandour-Edwards, R., Edwards, B. F., Matthews, K. R., & Griffey, S. M. (2001). Bax/bcl-2: cellular modulator of apoptosis in feline skin and basal cell tumours. Journal of Comparative Pathology, 124(2-3), 115–121. https://doi.org/10.1053/jcpa.2000.0437
- Martano, M., Restucci, B., Ceccarelli, D. M., Lo Muzio, L., & Maiolino, P. (2016). Immunohistochemical expression of vascular endothelial growth factor in canine oral squamous cell carcinomas. Oncology Letters, 11(1), 399-404. https://doi.org/10.3892/ol.2015.3847
- Martín de las Mulas, J., Espinosa de los Monteros, A., Carrasco, L., van Niel, M., & Fernández, A. (1995). Immunohistochemical distribution pattern of intermediate filament proteins in 50 feline neoplasms. Veterinary Pathology, 32(6), 692–701. https://doi.org/10.1177/030098589503200611
- Mestrinho, L. A., Faísca, P., Peleteiro, M. C., & Niza, M. M. (2017a). PCNA and grade in 13 canine oral squamous cell carcinomas: association with prognosis. Veterinary and Comparative Oncology, 15(1), 18–24. https://doi.org/10.1111/vco.12134
- Mestrinho, L.A., Pissarra, H., Carvalho, S., Peleteiro, M.C., Gawor, J., & Niza, M. M. R. E. (2017b) Comparison of histological and proliferation features of canine oral squamous cell carcinoma based on intraoral location: 36 cases. Journal of Veterinary Dentistry, 34(2), 92–99. https://doi.org/10.1177/0898756417713979
- Milli, U., Haziroglu, R,, Aydin, Y., & Gulbahar, M. (2000). Köpek meme tümörlerinde sitokeratin, vimentin ve alfa-düz kas aktin intermedier ve mikro filamentlerinin immunohistokimyasal lokalizasyonu. Turkish Journal of Veterinary & Animal Sciences, 24(1), 81-92.
- Munday, J. S., & Aberdein, D. (2012). Loss of retinoblastoma protein, but not p53, is associated with the presence of papillomaviral DNA in feline viral plaques, Bowenoid in situ carcinomas, and squamous cell carcinomas. Veterinary Pathology, 49(3), 538–545. https://doi.org/10.1177/0300985811419534
- Munday, J. S., He, Y., Aberdein, D., & Klobukowska, H. J. (2019). Increased p16CDKN2A, but not p53, immunostaining is predictive of longer survival time in cats with oral squamous cell carcinomas. Veterinary Journal, 248, 64–70. https://doi.org/10.1016/j.tvjl.2019.04.007
- Nasir, L., Krasner, H., Argyle, D. J., & Williams, A. (2000). Immunocytochemical analysis of the tumour suppressor protein (p53) in feline neoplasia. Cancer Letters, 155(1), 1–7. https://doi.org/10.1016/s0304-3835(00)00337-2
- Nasry, W. H. S., Wang, H., Jones, K., Dirksen, W. P., Rosol, T. J., Rodriguez-Lecompte, J. C., & Martin, C. K. (2018). CD147 and cyclooxygenase expression in feline oral squamous cell carcinoma. Veterinary Sciences, 5(3), 72. https://doi.org/10.3390/vetsci5030072
- Olmsted, G. A., Farrelly, J., Post, G. S., & Smith, J. (2017). Tolerability of toceranib phosphate (Palladia) when used in conjunction with other therapies in 35 cats with feline oral squamous cell carcinoma: 2009-2013. Journal of Feline Medicine and Surgery, 19(6), 568–575. https://doi.org/10.1177/1098612X16638118
- Ozkaraca, M., Ozdemir, S., Comakli, S., & Timurkan, M. O. (2022). Roles of apoptosis and autophagy in natural rabies infections. Veterinární Medicína–Czech, 67(1), 1-12. https://doi.org/10.17221/221/2020-VETMED
- Renzi, A., De Bonis, P., Morandi, L., Lenzi, J., Tinto, D., Rigillo, A., Bettini, G., Bellei, E., & Sabattini, S. (2019). Prevalence of p53 dysregulations in feline oral squamous cell carcinoma and non-neoplastic oral mucosa. PloS One, 14(4), e0215621. https://doi.org/10.1371/journal.pone.0215621
- Rodríguez Guisado, F., Suárez-Bonnet, A., & Ramírez, G. A. (2021) Cutaneous spindle cell squamous cell carcinoma in cats: clinical, histological, and immunohistochemical study. Veterinary Pathology, 58(3), 503–507. https://doi.org/10.1177/0300985820985126
- Sanz Ressel, B. L., Massone, A. R., & Barbeito, C. G. (2021). Persistent activation of the mammalian target of rapamycin signalling pathway in cutaneous squamous cell carcinomas in cats. Veterinary Dermatology, 32(6), 675–e180. https://doi.org/10.1111/vde.13001
- Simčič, P., Pierini, A., Lubas, G., Lowe, R., Granziera, V., Tornago, R., Valentini, F., Alterio, G., Cochi, M., Rangel, M. M. M., de Oliveira, K. D., Ostrand Freytag, J., Quadros, P. G., Sponza, E., Gattino, F., Impellizeri, J. A., & Torrigiani, F. (2021). A retrospective multicentric study of electrochemotherapy in the treatment of feline nasal planum squamous cell carcinoma. Veterinary Sciences, 8(3), 53. https://doi.org/10.3390/vetsci8030053
- Sparger, E. E., Murphy, B. G., Kamal, F. M., Arzi, B., Naydan, D., Skouritakis, C. T., Cox, D. P., & Skorupski, K. (2018). Investigation of immune cell markers in feline oral squamous cell carcinoma. Veterinary Immunology and Immunopathology, 202, 52–62. https://doi.org/10.1016/j.vetimm.2018.06.011
- Supsavhad, W., Dirksen, W. P., Hildreth, B. E., & Rosol, T. J. (2016). p16, pRb, and p53 in feline oral squamous cell carcinoma. Veterinary Sciences, 3(3), 18. https://doi.org/10.3390/vetsci3030018
- Théon, A. P., Madewell, B. R., Shearn, V. I., & Moulton, J. E. (1995). Prognostic factors associated with radiotherapy of squamous cell carcinoma of the nasal plane in cats. The American Veterinary Medical Association, 206(7), 991–996.
- Yoshimoto, S., Hoshino, Y., Izumi, Y., & Takagi, S. (2017). α-Smooth muscle actin expression in cancerassociated fibroblasts in canine epithelial tumors. Japanese Journal of Veterinary Research, 65(3), 135-144. https://doi.org/10.14943/jjvr.65.3.135.
Intermediate Filaments, P53 Gene, Cellular Proliferation, Metastasis and Apoptosis in Feline Squamous Cell Carcinomas
Year 2023,
Volume: 8 Issue: 2, 248 - 256, 31.08.2023
Emin Karakurt
,
Serpil Dağ
,
Özgür Aksoy
,
Enver Beytut
,
Celal Şahin Ermutlu
,
Ayfer Yıldız
,
Uğur Yıldız
,
Ersin Tanrıverdi
,
Hüseyin Koç
,
Mehmet Turan
Abstract
In this study, intermediate filaments, Pan Cytokeratin (Pan CK), Vimentin, Desmin and S-100 were evaluated to reveal the cellular origin of feline SCCs. Alpha-Smooth Muscle Actin (α-SMA) for cancer-related fibroblasts (CAFs) in the tumor microenvironment, and p53, a tumor suppressor gene, were investigated. Proliferating Cell Nuclear Antigen (PCNA) expression was evaluated for the cell proliferation index. Matrix Metalloproteinase-9 (MMP-9) immunoreactivity was evaluated for the metastasis and invasion capacity. In addition, it is aimed to reveal the expressions of proapoptotic Bax gene, antiapoptotic Bcl-2 gene, caspase-dependent pathway Caspase-3 and caspase-independent pathway Apoptosis Inducing Factor (AIF) for apoptosis mechanism. Biopsy samples taken from 7 cats brought to Department of Pathology for routine histopathological examination were used in this study. Tumor tissue samples were fixed in 10% formaldehyde solution. Serial sections of 5 μm thickness were taken from the paraffin blocks prepared after routine tissue follow-up procedures. Hematoxylin & Eosin (H&E) staining was performed on the sections. Avidin-Biotin Peroxidase-Technique (ABC) was used as immunohistochemical staining. It was determined that the tumors had epithelial-mesenchymal transition, exhibited a very high proliferation index, had p53 mutation, and showed low metastasis/high invasion capacity. It was revealed that Bax/Bcl-2 ratio increased in favor of proapoptotic Bax, and caspase-independent apoptosis was more dominant than caspase-dependent apoptosis.
References
- Altamura, G., Corteggio, A., Pacini, L., Conte, A., Pierantoni, G. M., Tommasino, M., Accardi, R., & Borzacchiello, G (2016). Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo. Virology, 496, 1-8. https://doi.org/10.1016/j.virol.2016.05.017
- Altamura, G., Degli Uberti, B., Galiero, G., De Luca, G., Power, K., Licenziato, L., Maiolino, P., & Borzacchiello, G (2021). The small molecule BIBR1532 exerts potential anti-cancer activities in preclinical models of feline oral squamous cell carcinoma through inhibition of telomerase activity and down-regulation of TERT. Frontiers in Veterinary Science, 7, 620776. https://doi.org/10.3389/fvets.2020.620776
- Altamura, G., Power, K., Martano, M., Degli Uberti, B., Galiero, G., De Luca, G., Maiolino, P., & Borzacchiello, G (2018). Felis catus papillomavirus type-2 E6 binds to E6AP, promotes E6AP/p53 binding and enhances p53 proteasomal degradation. Scientific Reports, 8(1), 17529. https://doi.org/10.1038/s41598-018-35723-7
- Barbosa, F. M. S., Santos, JdeJCdos., Gois, DDde., Costa Lima, Rda., Souza, MdeFde., Silva Lima, LHda., Souza E Silva, AAde., & Lucena, RBde (2019). Squamous cell carcinoma of the lung with small intestine metastasis in cat. Acta Scientiae Veterinariae, 47, 406. https://doi.org/10.22456/1679-9216.94711
- da Conceicao, M. E. B. A. M., Martins, D. M., Bertolo, P. H. L., Bezerra, D. K. D., da Silva, C. D. C. F., de Aguirra, L. R. V. M., Vasconcelos, R.D., & Pereira, W. L. A. (2016). Squamous cell carcinoma in third eyelid of cat. Acta Scientiae Veterinariae, 44(Suppl 1), 170. https://doi.org/10.22456/1679-9216.82863
- Dos Anjos, D. S., Bueno, C., Magalhães, L. F., Magalhães, G. M., Mattos-Junior, E., Pinto, M. M. R., De Nardi, A. B., Brunner, C. H. M., Leis-Filho, A. F., Calazans, S. G., & Fonseca-Alves, C. E Electrochemotherapy induces tumor regression and decreases the proliferative index in canine cutaneous squamous cell carcinoma. Scientific Reports, 9(1), 15819. https://doi.org/10.1038/s41598-019-52461-6
- Furusawa, Y., Takahashi, M., Shima-Sawa, M., Hatai, H., Miyoshi, N., Yamato, O., & Yabuki, A (2021). Immunocytochemical evaluation of epithelial-mesenchymal transition in epithelial tumors of dogs and cats. The Journal of Veterinary Medical Science, 83(9), 1363–1368. https://doi.org/10.1292/jvms.21-0021
- Gudenschwager-Basso, E. K., Stevenson, V., Sponenberg, D. P., Cecere, T. E., & Huckle, W. R. (2022). Characterization of the expression of angiogenic factors in cutaneous squamous cell carcinoma of domestic cats. Veterinary Sciences, 9(7), 375. https://doi.org/10.3390/vetsci9070375
- Harris, K., Gelberg, H. B., Kiupel, M., & Helfand, S. C. (2019). Immunohistochemical features of epithelial-mesenchymal transition in feline oral squamous cell carcinoma. Veterinary Pathology, 56(6), 826–839. https://doi.org/10.1177/0300985819859873
- Jankowski, M. K., Ogilvie, G. K., Lana, S. E., Fettman, M. J., Hansen, R. A., Powers, B. E., Mitchener, K. M., Lovett, S. D., Richardson, K. L., Parsley, L., & Walton, J. A. (2002). Matrix metalloproteinase activity in tumor, stromal tissue, and serum from cats with malignancies. Journal of Veterinary Internal Medicine 2002; 16 (1): 105–108. https://doi.org/10.1892/0891-6640(2002)016<0105:mmaits>2.3.co;2
- Kabak, Y. B., Sozmen, M., Devrim, A. K., Sudagidan, M., Yildirim, F., Guvenc, T., Yarim, M., Gulbahar, Y. M., Ahmed, I., Karaca, E., & Inal, S. (2020) Expression levels of angiogenic growth factors in feline squamous cell carcinoma. Acta Veterinaria Hungarica, 68(1), 37–48. https://doi.org/10.1556/004.2020.00005
- Karakurt, E., Nuhoğlu, H., Dağ, S., Çelebi, Ö., Büyük, F., Beytut, E., Yıldız, A., Kuru, M., & Akça, D. (2023) Immunohistochemical investigation of TNF-α and IFN-γ expressions in sheep fetuses with brucellosis. Pakistan Veterinary Journal, 43(1), 85-90. http://dx.doi.org/10.29261/pakvetj/2022.088
- Klobukowska, H. J., & Munday, J. S. (2016). High numbers of stromal cancer-associated fibroblasts are associated with a shorter survival time in cats with oral squamous cell carcinoma. Veterinary Pathology, 53(6), 1124–1130. https://doi.org/10.1177/0300985816629713
- Layne, E. A., & Graham, M. (2016). Cutaneous squamous cell carcinoma manifesting as follicular isthmus cysts in a cat. JFMS Open Reports, 2, 2055116915625356. https://doi.org/10.1177/2055116915625356
- Madewell, B. R., Gandour-Edwards, R., Edwards, B. F., Walls, J. E., & Griffey, S. M. (1999). Topographic distribution of bcl-2 protein in feline tissues in health and neoplasia. Veterinary Pathology, 36(6), 565–573. https://doi.org/10.1354/vp.36-6-565
- Madewell, B. R., Gandour-Edwards, R., Edwards, B. F., Matthews, K. R., & Griffey, S. M. (2001). Bax/bcl-2: cellular modulator of apoptosis in feline skin and basal cell tumours. Journal of Comparative Pathology, 124(2-3), 115–121. https://doi.org/10.1053/jcpa.2000.0437
- Martano, M., Restucci, B., Ceccarelli, D. M., Lo Muzio, L., & Maiolino, P. (2016). Immunohistochemical expression of vascular endothelial growth factor in canine oral squamous cell carcinomas. Oncology Letters, 11(1), 399-404. https://doi.org/10.3892/ol.2015.3847
- Martín de las Mulas, J., Espinosa de los Monteros, A., Carrasco, L., van Niel, M., & Fernández, A. (1995). Immunohistochemical distribution pattern of intermediate filament proteins in 50 feline neoplasms. Veterinary Pathology, 32(6), 692–701. https://doi.org/10.1177/030098589503200611
- Mestrinho, L. A., Faísca, P., Peleteiro, M. C., & Niza, M. M. (2017a). PCNA and grade in 13 canine oral squamous cell carcinomas: association with prognosis. Veterinary and Comparative Oncology, 15(1), 18–24. https://doi.org/10.1111/vco.12134
- Mestrinho, L.A., Pissarra, H., Carvalho, S., Peleteiro, M.C., Gawor, J., & Niza, M. M. R. E. (2017b) Comparison of histological and proliferation features of canine oral squamous cell carcinoma based on intraoral location: 36 cases. Journal of Veterinary Dentistry, 34(2), 92–99. https://doi.org/10.1177/0898756417713979
- Milli, U., Haziroglu, R,, Aydin, Y., & Gulbahar, M. (2000). Köpek meme tümörlerinde sitokeratin, vimentin ve alfa-düz kas aktin intermedier ve mikro filamentlerinin immunohistokimyasal lokalizasyonu. Turkish Journal of Veterinary & Animal Sciences, 24(1), 81-92.
- Munday, J. S., & Aberdein, D. (2012). Loss of retinoblastoma protein, but not p53, is associated with the presence of papillomaviral DNA in feline viral plaques, Bowenoid in situ carcinomas, and squamous cell carcinomas. Veterinary Pathology, 49(3), 538–545. https://doi.org/10.1177/0300985811419534
- Munday, J. S., He, Y., Aberdein, D., & Klobukowska, H. J. (2019). Increased p16CDKN2A, but not p53, immunostaining is predictive of longer survival time in cats with oral squamous cell carcinomas. Veterinary Journal, 248, 64–70. https://doi.org/10.1016/j.tvjl.2019.04.007
- Nasir, L., Krasner, H., Argyle, D. J., & Williams, A. (2000). Immunocytochemical analysis of the tumour suppressor protein (p53) in feline neoplasia. Cancer Letters, 155(1), 1–7. https://doi.org/10.1016/s0304-3835(00)00337-2
- Nasry, W. H. S., Wang, H., Jones, K., Dirksen, W. P., Rosol, T. J., Rodriguez-Lecompte, J. C., & Martin, C. K. (2018). CD147 and cyclooxygenase expression in feline oral squamous cell carcinoma. Veterinary Sciences, 5(3), 72. https://doi.org/10.3390/vetsci5030072
- Olmsted, G. A., Farrelly, J., Post, G. S., & Smith, J. (2017). Tolerability of toceranib phosphate (Palladia) when used in conjunction with other therapies in 35 cats with feline oral squamous cell carcinoma: 2009-2013. Journal of Feline Medicine and Surgery, 19(6), 568–575. https://doi.org/10.1177/1098612X16638118
- Ozkaraca, M., Ozdemir, S., Comakli, S., & Timurkan, M. O. (2022). Roles of apoptosis and autophagy in natural rabies infections. Veterinární Medicína–Czech, 67(1), 1-12. https://doi.org/10.17221/221/2020-VETMED
- Renzi, A., De Bonis, P., Morandi, L., Lenzi, J., Tinto, D., Rigillo, A., Bettini, G., Bellei, E., & Sabattini, S. (2019). Prevalence of p53 dysregulations in feline oral squamous cell carcinoma and non-neoplastic oral mucosa. PloS One, 14(4), e0215621. https://doi.org/10.1371/journal.pone.0215621
- Rodríguez Guisado, F., Suárez-Bonnet, A., & Ramírez, G. A. (2021) Cutaneous spindle cell squamous cell carcinoma in cats: clinical, histological, and immunohistochemical study. Veterinary Pathology, 58(3), 503–507. https://doi.org/10.1177/0300985820985126
- Sanz Ressel, B. L., Massone, A. R., & Barbeito, C. G. (2021). Persistent activation of the mammalian target of rapamycin signalling pathway in cutaneous squamous cell carcinomas in cats. Veterinary Dermatology, 32(6), 675–e180. https://doi.org/10.1111/vde.13001
- Simčič, P., Pierini, A., Lubas, G., Lowe, R., Granziera, V., Tornago, R., Valentini, F., Alterio, G., Cochi, M., Rangel, M. M. M., de Oliveira, K. D., Ostrand Freytag, J., Quadros, P. G., Sponza, E., Gattino, F., Impellizeri, J. A., & Torrigiani, F. (2021). A retrospective multicentric study of electrochemotherapy in the treatment of feline nasal planum squamous cell carcinoma. Veterinary Sciences, 8(3), 53. https://doi.org/10.3390/vetsci8030053
- Sparger, E. E., Murphy, B. G., Kamal, F. M., Arzi, B., Naydan, D., Skouritakis, C. T., Cox, D. P., & Skorupski, K. (2018). Investigation of immune cell markers in feline oral squamous cell carcinoma. Veterinary Immunology and Immunopathology, 202, 52–62. https://doi.org/10.1016/j.vetimm.2018.06.011
- Supsavhad, W., Dirksen, W. P., Hildreth, B. E., & Rosol, T. J. (2016). p16, pRb, and p53 in feline oral squamous cell carcinoma. Veterinary Sciences, 3(3), 18. https://doi.org/10.3390/vetsci3030018
- Théon, A. P., Madewell, B. R., Shearn, V. I., & Moulton, J. E. (1995). Prognostic factors associated with radiotherapy of squamous cell carcinoma of the nasal plane in cats. The American Veterinary Medical Association, 206(7), 991–996.
- Yoshimoto, S., Hoshino, Y., Izumi, Y., & Takagi, S. (2017). α-Smooth muscle actin expression in cancerassociated fibroblasts in canine epithelial tumors. Japanese Journal of Veterinary Research, 65(3), 135-144. https://doi.org/10.14943/jjvr.65.3.135.