Araştırma Makalesi
BibTex RIS Kaynak Göster

Sıçanlarda Allium Schoenoprasum L. Etanol Ekstraktı Ve Akrilamid Uygulandıktan Sonra Hematolojik Parametrelerin Değerlendirilmesi

Yıl 2023, , 175 - 178, 31.08.2023
https://doi.org/10.51754/cusbed.1272736

Öz

Bu çalışmada, Allium schoenoprasum L. bitkisinin akrilamid toksisitesine karşı koruyucu etkisinin araştırılması amaçlanmıştır. Hayvan materyali olarak 32 adet Wistar-Albino dişi rat 4 gruba ayrıldı. Birinci grup kontrol grubunu oluşturdu. İkinci gruba 15 gün boyunca her gün 25 mg/kg Akrilamid gastrik sonda ile verildi. Üçüncü gruba 200 mg/kg Allium schoenoprasum L. etanol ekstresi gastrik sonda ile 15 gün verildi. Dördüncü gruba 25 mg/kg Acrylamide + 200 mg/kg Allium schoenoprasum L. etanol ekstresi gastrik sonda ile 15 gün verildi. Analiz sonucunda akrilamid grubundaki sıçanlarda RBC, HCT, HGB, MCV, MCH, MCHC WBC, Lenfosit, Monosit ve Eozinofil Lenfosit (%) seviyeleri düşmesine rağmen, nötrofil ve RDW miktarı arttı (P <0,05). Allium schoenoprasum L. bitkisinin akrilamit maruziyetinin olumsuz etkilerini düzeltmede etkili olabileceği belirlendi.

Kaynakça

  • Aamir, M., Shazma,N., Rukhsana,A., Mehwish,J., Habib,A., Asifa,B., Qurat-ul,A., Baderqa,A. (2016). Evaluation of Hypolipidemic Activity of Alliumschoenoprasum in Albino Rats. British Journal of Pharmaceutical Research, 14 (5): 1-10.
  • Ali MA, Aly EM, Elawady AI. (2014). Effectiveness of selenium on acrylamide toxicity to retina.Int J Opthalmol, 7(4):614-620
  • Altinoz, E., Turkoz, Y. (2014). The protective role of N-Acetylcysteine against acrylamide-ınduced genotoxicity and oxidati ve stress ın rats. Gene Ther Mol Biol , 16: 35-43.
  • Barber, D.S., Hunt, J.R., Ehrich, M.F., Lehning, E.J., LoPachin, R.M. (2001). Toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Metabolism, 22(3):341-353.
  • Boettcher, M. I., Schettgen, T., Kutting, B., Pischetsrieder, M., Angerer, J. (2005). Mercapturic acids of acrylamide and glycidamide as biomarkers of the internal exposure to acrylamide in the general population. Mutat Res, 580: 167–76.
  • Ceylan, S., Cetin, S., Camadan, Y., Saral, O., Ozsen, O., Tutus, A. (2019). Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Irish Journal of Medical Science,
  • Claus, A., Carle, R., Schieber, A. (2008). Acrylamide in cereal products. A review Journal of Cereal Science, 47: 118-133.
  • Comba, A., Oto, G., Comba, B., Ozdemir, H., Keskin, S., & Akveran, G. A. (2020). Effects of boric acid on proinflammation cytokines, total oxidativeantioxidative status and hematological parameters in rats applied benzo (a) pyrene. Feb Fresenıus Envıronmental Bulletin, 3599.
  • Comba, B., Cinar, A., Comba, A., & GENCER, Y. G. (2016). Effects of ACTH application on kidney function tests, the electrolytes and hematological parameters in rats. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 63(3), 229-233.
  • Comba, B., Oto, G., Mis, L., Özdemir, H., & Comba, A. (2016). Effects of borax on inflammation, haematological parameters and total oxidant-antioxidant status in rats applied 3– methylcholanthrene. Kafkas Univ Vet Fak Derg, 22(4), 539- 544.
  • Dybing, E., Sanner, T. (2003). Risk assessment of acrylamide in foods. Toxicol. Sci., 75: 7–15.
  • Eker İriş, H., & Yaşar, S. (2021). Investigation of the effect of Allium Schoenoprasum L. (sirmo) plant against acrylamide toxicity in rats. Fresenius Environmental Bulletin, vol.30, no.7, 8889-8904.
  • Fırat, M., Aziret, A. (2016). Edible Allium L. species that are sold as fresh vegetables in public bazaars of Hakkâri province and its surroundings in Turkey. Acta Biologica Turcica., 29: 14-19.
  • Gargas, L., Kirman, R., Sweeney, L.M., Tardiff, R.G. (2009). Acrylamide: consideration of species differences and nonlinear processes inestimating risk and safety for human ingestion. Food chem Toxicol, 47 (4): 760-768
  • Haro, G., Sinaga, S. M., Iksen, I., Nerdy, N., & Theerachetmongkol, S. (2017). Protective effects of Chives Leaves (Allium Schoenoprasum, L.) infusion against ethylene glycol and ammonium chloride induced nephrolithiasis in rats. Journal of Applied Pharmaceutical Science, 7(8), 222-225.
  • Hashimoto, K., Aldridge, W.N. (1970). Biochemical studies on acrylamide, a neurotoxic agent. Biochem Pharmacol, 19: 2591–604
  • Ko, M. H., Chen, W. P., Hsieh, S.T. (2002). Neuropathology of skin denervation in acrylamide-inducedneuropathy. Neurobiol Dis, 11 (1): 155-65.
  • Konings, E.J.M, Baarsb, A.J., van Klaveren, J.D., Spanjer, M.C., Rensen, P.M., Hiemstra, M., van Kooij, J.A., Peters, P.W. (2003). Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks.;41(11):1569-1579
  • Mis, L., & Oğuz, B. (2022). Anaplasma phagocytophilum in Horses - Evaluation of Proinflammatory Biomarkers. Acta Scientiae Veterinariae, 50. https://doi.org/10.22456/1679-9216.119981
  • Mis, L., Baydas, B., & Yaşar, S., (2021). Evaluation of the effect of pomegranate flowers on antioxidant activity and BDNF levels in experimental renal failure in rats. Fresenius Environmental Bulletin , vol.30, no.6, 5669-5675.
  • Mis, L., Comba, B., Uslu, S., & Yeltekin, A. (2018). Effect of wheatgrass on DNA damage, oxidative stress index and histological findings in diabetic rats. International journal of morphology, 36(4)
  • Pedreschi, F., Kaack, K., Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT-Food Sci Technol, 37: 679–85
  • Pruser, K. N., Flynn, N. E. (2011). Acrylamide in healthanddisease. Front Biosci (ScholEd), 3: 41-51
  • Rayburn, J.R., Friedman, M. (2010). L-Cysteine, N-Acetyl-l- cysteine, and glutathione protect xenopus laevis embryos against acrylamide-induced malformations and mortality in the frog embryo teratogenesis assay. J. Agric. Food Chem;58(20):11172-1117
  • Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., Robert, M. C. Riedeker, S,. (2002). Food chemistry: Acrylamide from maillard reaction products. Nature, 419: 449-450.
  • Stajner, D., Popovic, B. M., Calic-Dragosavac, D., Malencic, D., Zdravkovic‐Korac, S. (2011). Comparative study on Allium Schoenoprasum cultivated plant and allium schoenoprasum tissue culture organs antioxidant status. Phytother. Res: 1618- 1622.
  • Stajner, D.,Canadanoviç-Brunet ,J. Pavloviç, A. (2004). Allium Schoenoprasum L., as a natural antioxidant. Phytother. Res, 18: 522–524
  • Timite, G., Offer, A. C. M., Miyamoto, T., Tanaka, C., Mirjolet, J. F., Duchamp, O. (2013). Dubois MAL. Structure and cytotoxicity of steroidal glycosides from Allium schoenoprasum L. Phytochemistry, 88: 61–66.
  • Yousef, M. I., El-Demerdash, F. M. (2006). Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology, 219 (1-3): 133-141.

The Evaluation Of Hematological Parameters After Administrated Allium Schoenoprasum L. Ethanol Extract And Acrylamide İn The Rats

Yıl 2023, , 175 - 178, 31.08.2023
https://doi.org/10.51754/cusbed.1272736

Öz

In this study, it was aimed to investigate the protective effect of Allium schoenoprasum L. plant against acrylamide toxicity. As animal material, 32 Wistar-Albino female rats were divided into 4 groups. The first group formed the control group. In the second group, 25 mg/kg Acrylamide was administered by gastric gavage every day for 15 days. In the third group, 200 mg/kg Allium schoenoprasum L. ethanol extract was given by gastric gavage for 15 days. In the fourth group, 25 mg/kg Acrylamide + 200 mg/kg Allium schoenoprasum L. ethanol extract was administered by gastric gavage for 15 days. As a result of the analysis, although the levels of RBC, HCT, HGB, MCV, MCH, MCHC WBC, Lymphocyte, Monocyte and Eosinophil Lymphocyte (%) decreased in rats in the acrylamide group, the amount of neutrophils and RDW increased (P<0.05). It was determined that Allium schoenoprasum L. plant may have an effect in correcting the negative effects of acrylamide exposure.

Kaynakça

  • Aamir, M., Shazma,N., Rukhsana,A., Mehwish,J., Habib,A., Asifa,B., Qurat-ul,A., Baderqa,A. (2016). Evaluation of Hypolipidemic Activity of Alliumschoenoprasum in Albino Rats. British Journal of Pharmaceutical Research, 14 (5): 1-10.
  • Ali MA, Aly EM, Elawady AI. (2014). Effectiveness of selenium on acrylamide toxicity to retina.Int J Opthalmol, 7(4):614-620
  • Altinoz, E., Turkoz, Y. (2014). The protective role of N-Acetylcysteine against acrylamide-ınduced genotoxicity and oxidati ve stress ın rats. Gene Ther Mol Biol , 16: 35-43.
  • Barber, D.S., Hunt, J.R., Ehrich, M.F., Lehning, E.J., LoPachin, R.M. (2001). Toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Metabolism, 22(3):341-353.
  • Boettcher, M. I., Schettgen, T., Kutting, B., Pischetsrieder, M., Angerer, J. (2005). Mercapturic acids of acrylamide and glycidamide as biomarkers of the internal exposure to acrylamide in the general population. Mutat Res, 580: 167–76.
  • Ceylan, S., Cetin, S., Camadan, Y., Saral, O., Ozsen, O., Tutus, A. (2019). Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Irish Journal of Medical Science,
  • Claus, A., Carle, R., Schieber, A. (2008). Acrylamide in cereal products. A review Journal of Cereal Science, 47: 118-133.
  • Comba, A., Oto, G., Comba, B., Ozdemir, H., Keskin, S., & Akveran, G. A. (2020). Effects of boric acid on proinflammation cytokines, total oxidativeantioxidative status and hematological parameters in rats applied benzo (a) pyrene. Feb Fresenıus Envıronmental Bulletin, 3599.
  • Comba, B., Cinar, A., Comba, A., & GENCER, Y. G. (2016). Effects of ACTH application on kidney function tests, the electrolytes and hematological parameters in rats. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 63(3), 229-233.
  • Comba, B., Oto, G., Mis, L., Özdemir, H., & Comba, A. (2016). Effects of borax on inflammation, haematological parameters and total oxidant-antioxidant status in rats applied 3– methylcholanthrene. Kafkas Univ Vet Fak Derg, 22(4), 539- 544.
  • Dybing, E., Sanner, T. (2003). Risk assessment of acrylamide in foods. Toxicol. Sci., 75: 7–15.
  • Eker İriş, H., & Yaşar, S. (2021). Investigation of the effect of Allium Schoenoprasum L. (sirmo) plant against acrylamide toxicity in rats. Fresenius Environmental Bulletin, vol.30, no.7, 8889-8904.
  • Fırat, M., Aziret, A. (2016). Edible Allium L. species that are sold as fresh vegetables in public bazaars of Hakkâri province and its surroundings in Turkey. Acta Biologica Turcica., 29: 14-19.
  • Gargas, L., Kirman, R., Sweeney, L.M., Tardiff, R.G. (2009). Acrylamide: consideration of species differences and nonlinear processes inestimating risk and safety for human ingestion. Food chem Toxicol, 47 (4): 760-768
  • Haro, G., Sinaga, S. M., Iksen, I., Nerdy, N., & Theerachetmongkol, S. (2017). Protective effects of Chives Leaves (Allium Schoenoprasum, L.) infusion against ethylene glycol and ammonium chloride induced nephrolithiasis in rats. Journal of Applied Pharmaceutical Science, 7(8), 222-225.
  • Hashimoto, K., Aldridge, W.N. (1970). Biochemical studies on acrylamide, a neurotoxic agent. Biochem Pharmacol, 19: 2591–604
  • Ko, M. H., Chen, W. P., Hsieh, S.T. (2002). Neuropathology of skin denervation in acrylamide-inducedneuropathy. Neurobiol Dis, 11 (1): 155-65.
  • Konings, E.J.M, Baarsb, A.J., van Klaveren, J.D., Spanjer, M.C., Rensen, P.M., Hiemstra, M., van Kooij, J.A., Peters, P.W. (2003). Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks.;41(11):1569-1579
  • Mis, L., & Oğuz, B. (2022). Anaplasma phagocytophilum in Horses - Evaluation of Proinflammatory Biomarkers. Acta Scientiae Veterinariae, 50. https://doi.org/10.22456/1679-9216.119981
  • Mis, L., Baydas, B., & Yaşar, S., (2021). Evaluation of the effect of pomegranate flowers on antioxidant activity and BDNF levels in experimental renal failure in rats. Fresenius Environmental Bulletin , vol.30, no.6, 5669-5675.
  • Mis, L., Comba, B., Uslu, S., & Yeltekin, A. (2018). Effect of wheatgrass on DNA damage, oxidative stress index and histological findings in diabetic rats. International journal of morphology, 36(4)
  • Pedreschi, F., Kaack, K., Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT-Food Sci Technol, 37: 679–85
  • Pruser, K. N., Flynn, N. E. (2011). Acrylamide in healthanddisease. Front Biosci (ScholEd), 3: 41-51
  • Rayburn, J.R., Friedman, M. (2010). L-Cysteine, N-Acetyl-l- cysteine, and glutathione protect xenopus laevis embryos against acrylamide-induced malformations and mortality in the frog embryo teratogenesis assay. J. Agric. Food Chem;58(20):11172-1117
  • Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., Robert, M. C. Riedeker, S,. (2002). Food chemistry: Acrylamide from maillard reaction products. Nature, 419: 449-450.
  • Stajner, D., Popovic, B. M., Calic-Dragosavac, D., Malencic, D., Zdravkovic‐Korac, S. (2011). Comparative study on Allium Schoenoprasum cultivated plant and allium schoenoprasum tissue culture organs antioxidant status. Phytother. Res: 1618- 1622.
  • Stajner, D.,Canadanoviç-Brunet ,J. Pavloviç, A. (2004). Allium Schoenoprasum L., as a natural antioxidant. Phytother. Res, 18: 522–524
  • Timite, G., Offer, A. C. M., Miyamoto, T., Tanaka, C., Mirjolet, J. F., Duchamp, O. (2013). Dubois MAL. Structure and cytotoxicity of steroidal glycosides from Allium schoenoprasum L. Phytochemistry, 88: 61–66.
  • Yousef, M. I., El-Demerdash, F. M. (2006). Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology, 219 (1-3): 133-141.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm Araştırma Makalesi
Yazarlar

Leyla Mis 0000-0002-5110-2862

Semih Yaşar 0000-0003-2754-6030

Özlem Gizey Yurderi 0000-0002-7262-3325

Yayımlanma Tarihi 31 Ağustos 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Mis, L., Yaşar, S., & Gizey Yurderi, Ö. (2023). The Evaluation Of Hematological Parameters After Administrated Allium Schoenoprasum L. Ethanol Extract And Acrylamide İn The Rats. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 8(2), 175-178. https://doi.org/10.51754/cusbed.1272736

   ici2.png    logo.png        asos-index.png       crossref-logo-landscape-200.png     logo.png       search-result-logo-horizontal-TEST.jpg 

     

logo.png    scilit.jpg     goole_scholar.jpg       logo.png    logo.png


f9ab67f.png                    download