Kanser gerek mortalite gerekse ortaya çıkma oranı açısından hiç şüphesiz çağımızın en tehlikeli hastalığıdır. Gelişen yeni teknolojiler ile erken tanı, yeni nesil kematerapötikler ve ileri düzey radyoterapiler geliştirilmiş olsa da kanser hastalığına tam bir çözüm olamamışlardır. Bu durum biyoteknolojinin de gelişmesiyle birlikte kanserin tedavi ve korunma yöntemlerini laboratuvar bazlı geliştirmeye yönlendirmiştir. Laboratuvar bazlı bu tekniklerden en önemlisi viruslar aracılığıyla yapılan kanser tedavisi yani Onkolitik Viroterapi’dir. Kanser hücrelerine yüksek affinite gösteren doğadaki bu viruslar, laboratuvar şartlarında geliştirilerek daha etkin olması sağlanmıştır. Ancak insanlardaki immun sistemin oldukça karmaşık ve güçlü bir işleyişi olması virusların kanser hücresine tam olarak etki etmesini engellemektedir. Bu durum insan orijinli olmayan viruslara yöneltmiştir ki bunlardan ön plana çıkanı ise Newcastle Disease Virus (NDV) olmuştur. Özellikle insan orijinli olmayan hayvan viruslarının insanlar üzerinde yan etki göstermemesi ya da çok düşük bir etki göstermesi onları ayrıca avantajlı hale getirmektedir. NDV kanatlıların oldukça patojen bir hastalığı olmasına karşın insanlarda antitümöral etkisi sayesinde birçok başarılı terapi sonucu elde edilmiştir. Bu derlemede NDV’un kanser hücreleri için terapötik etkisi ve immun sistemle ilişkisi incelenecek, ayrıca konu hakkında yapılan laboratuvar ve klinik çalışmalara değinilecektir.
1. Doyle TM. (1927): B. aertrycke infection of
chicks. Journal of Comparative Pathology and
Therapeutics; 40: 71-75.
2. de Leeuw O, Peeters, B. (1999): Complete
nucleotide sequence of Newcastle disease virus:
evidence for the existence of a new genus within the
subfamily Paramyxovirinae. Journal of General
Virology; 80(1), 131-136.
3. Yusoff K, Tan WS. (2001): Newcastle disease
virus: macromolecules and opportunities. Avian
Pathology; 30: 439 – 455.
4. Cancer Network: Lawrence, L. (2015): "FDA
Approves First Oncolytic Virus With New Melanoma
Therapy".
http://www.cancernetwork.com/melanoma/fdaapproves-
first-oncolytic-virus-new-melanomatherapy,
Erişim tarihi; 10.10.2015.
5. Huang F, Wang BR, Wu YQ, Wang FC, Zhang J,
Wang YG. (2016): Oncolytic viruses against cancer
stem cells: A promising approach for
gastrointestinal cancer. World Journal of
Gastroenterology; 22(35): 7999 – 8009.
6. Seymour LW, Fisher KD. (2016): Oncolytic
viruses: finally delivering. British Journal of Cancer;
114: 357–361.
7. Dharmadhikari N, Mehnert JM, Kaufman HL.
(2015): Oncolytic Virus Immunotherapy for
Melanoma. Current Treatment Options in Oncology;
16(10): 1-15.
8. Sinkovics JG, Horvath JC. (2000): Newcastle
disease virus (NDV): brief history of its oncolytic
strains. Journal of Clinical Virology; 16: 1–15.
9. Schirrmacher V, Haas C, Bonifer R, Ahlert T,
Gerhards R and Ertel C. (1999): Human tumor cell
modification by virus infection: an efficient and safe
way to produce cancer vaccine with pleiotropic
immune stimulatory properties when using
Newcastle Disease Virus. Gene Therapy; 6: 63 – 73..
10. Fiola C, Peeters B, Fournier P, Arnold A,
Bucur M, Schirrmacher V. (2006): Tumor
selective replication of Newcastle Disease Virus:
association with defects of tumor cells in antiviral
defence. International Journal of Cancer; 119(2) :
328 – 338.
11. Ahlert T, Schirrmacher V. (1990): Isolation of
a human melanoma adapted Newcastle disease
virus mutant with highly selective replication
patterns. Cancer Research; 50(18): 5962 – 5968.
12. Janke M, Peeters B, de Leeuw O, Moorman R,
Arnold A, Fournier P, Schirrmacher V. (2007):
Recombinant Newcastle Disease Virus (NDV) with
inserted gene coding for GM-CSF as a new vector for
cancer immunogene therapy. Gene Therapy; 14
(23): 1639 – 1649.
13. Elankumaran S, Rockemann D and Samal SK.
(2006): Newcastle Disease Virus exerts oncolysis
by both intrinsic and extrinsic caspase-dependent
pathways of cell death. Journal of Virology; 80 (15):
7522 – 7534.
14. Fábián U, Csatary C, Szeberényi J, Csatary LK.
(2007): p53-independent endoplasmic reticulum
stress-mediated cytotoxicity of a Newcastle Disease
Virus strain in tumor cell lines. Journal of Virology;
81(6): 2817 – 2830.
15. Lorence RM, Pecora AL, Major PP, Hotte SJ,
Laurie SA, Roberts MS, Groene WS, Bamat, MK.
(2003): Overview of phase I studies of intravenous
administration of PV701, an oncolytic virus. Current
opinion in molecular therapeutics; 5(6): 618-624.
16. Sinkovics JG, Horvath JC. (2000): Vaccination
against human cancers (review). Intertional Journal
of Oncology; 16: 81–96.
17. Liu TC, Kirn D. (2007): Systemic efficacy with
oncolytic virus therapeutics: clinical proof-ofconcept
and future directions. Cancer research;
67(2): 429-432.
18. Apostolidis L, Schirrmacher V, Fournier P.
(2007): Host mediated anti-tumor effect of
oncolytic Newcastle Disease Virus after
locoregional application. International Journal of
Oncology; 31: 1009 – 1019.
19. Takeda K, Kaisho T, Akira S. (2003): Toll-like
receptors. Annual review of immunology; 21(1), 335-
376.
20. Thompson AJ, Locarnini SA. (2007): Toll-like
receptors, RIG-I-like RNA helicases and the antiviral
innate immune response. Immunology and Cell
Biology; 85 (6): 435 – 445.
21. Melchjorsen,J, Jensen SB, Malmgaard L,
Rasmussen SB, Weber F, Bowie AG, Matiakinen
S, Paludan SR. (2005): Activation of innate defense
against a paramyxovirus is mediated by RIG-I and
TLR7 and TLR8 in a cell-type-specific manner.
Journal of virology; 79(20): 12944-12951.
22. Washburn B, Weigand MA, Grosse-Wilde A,
Janke M, Stahl H, Rieser E, Sprick MR,
Schirrmacher V, Walczak H. (2003): TNF-related
apoptosis-inducing ligand mediates tumoricidal
activity of human monocytes stimulated by
Newcastle Disease Virus. Journal of Immunology;
170(4): 1814 – 1821.
23. Koks CA, Garg AD, Ehrhardt M, Riva M,
Vandenberk L, Boon L, De Vleeschouwer S,
Agostinis P, Graf N, Gool SW. (2014): Newcastle
disease virotherapy induces long-term survival and
tumor-specific immune memory in orthotopic
glioma through the induction of immunogenic cell
death. International Journal of Cancer; 136: 313–
325.
24. Magyarics Z, Rajnavölgyi É. (2005):
Professional type I Interferon-producing cells-A
Unique Subpopulation of Dendritic Cells. Acta
microbiologica et immunologica hungarica; 52(3-4):
443-462.
25. Kawai T, Akira S. (2005): Pathogen recognition
with Toll-like receptors. Current opinion in
immunology; 17(4): 338-344.
26. Lindemann J. (1974): Viruses as
immunological adjuvants in cancer. Biochimica et
Biophysica Acta (BBA)-Reviews on Cancer; 355(1):
49-75.
27. Forden C. (2004): Do T lymphocytes correlate
danger signals to antigen?. Medical hypotheses;
62(6): 898-906.
28. Hengel H, Koszinowski UH, Conzelmann KK.
(2005): Viruses know it all: new insights into IFN
networks. Trends in immunology; 26(7): 396-401.
29. von Hoegen P, Zawatzky R, Schirrmacher V.
(1990): Modification of tumor cells by a low dose of
Newcastle Disease Virus: III. Potentiation of tumor
specific cytolytic T cell activity via induction of
interferon alfa, beta. Cellular Immunology; 126: 80 –
90.
30. Termeer CC, Schirrmacher V, Bröcker EB,
Becker JC. (2001): Newcastle-Disease-Virus
infection induces a B7–1/ B7–2 independent T-cellcostimulatory
activity in human melanoma cells.
Cancer Gene Therapy; 7(2): 316 – 323.
31. Washburn B, Schirrmacher V. (2002): Human
tumor cell infection by Newcastle Disease Virus
leads to upregulation of HLA and cell adhesion
molecules and to induction of interferons,
chemokines and finally apoptosis. International
Journal of Oncology; 21(1) : 85 – 93.
32. Cassell WA, Garrett RE. (1965): Virus de la
enfermedad de Newcastle como agente
antineoplásico. Cáncer; 18: 863-868.
33. Lorence RM, Scot Roberts M, O'Neil JD,
Groene WS, Miller JA, Mueller SN, Bamat MK.
(2007): Phase 1 clinical experience using
intravenous administration of PV701, an oncolytic
Newcastle disease virus. Current cancer drug
targets; 7(2): 157-167.
34. Freeman AI, Zakay-Rones Z, Gomori JM,
Linetsky E, Rasooly L, Greenbaum E, Rozenman-
Yair S, Panet A, Libson E, Irving CS, Galun, E.
(2006): Phase I/II trial of intravenous NDV-HUJ
oncolytic virus in recurrent glioblastoma
multiforme. Molecular Therapy; 13(1): 221-228.
35. Hotte SJ, Lorence RM, Hirte HW, Polawski SR,
Bamat MK, O’Neil JD, Roberts MS, Groene WS,
Major PP. (2007): An optimized clinical regimen
for the oncolytic virus PV701. Clinical Cancer
Research; 13(3): 977 – 985.
36. Csatary LK, Csatary C, Gosztonyi G, Bodey B.
(2006): Promising MTH-68/H Oncolytic Newcastle
Disease Virus therapy in human high grade gliomas
Focus on Brain Cancer Research. 69 – 82, Nova
Science Publishers, New York.
37. Csatary LK, Massey RJ. (1993): "Method for
treating viral diseases with attenuated virus”
Washington, DC: U.S. Patent and Trademark Office,
U.S. Patent No. 5,215,745.
38. Nelson NJ. (1999): Scientific interest in
Newcastle disease virus is reviving. Journal of the
National Cancer Institute; 91(20): 1708-1710.
39. Sánchez D, Pelayo R, Medina L, Vadillo E,
Sánchez R, Núñez L, Cesarman-Maus G,
Sarmiento-Silva R. (2015): Newcastle Disease
Virus: Potential Therapeutic Application for Human
and Canine Lymphoma. Viruses; 8(1): 3-14.
40. Zamarin D, Holmgaard RB, Subudhi SK, Park
JS, Mansour M, Palese P, Merghoub T, Wolchok
JD, Allison JP. (2014): Localized oncolytic
virotherapy overcomes systemic tumor resistance
to immune checkpoint blockade immunotherapy.
Science Translational Medicine; 6: 226 -232.
41. Schirrmacher V, Bihari AS, Stücker W,
Sprenger T. (2014): Long-term remission of
prostate cancer with extensive bone metastases
upon immuno- and virotherapy: A case report.
Oncology Letters; 8(6): 2403–2406.
42. Wu Y, He J, An Y, Wang X, Liu Y, Yan S, Ye X, Qi
J, Zhu S, Yu Q, Yin J, Li D, Wang W. (2015):
Recombinant Newcastle disease virus (NDV/Anh-
IL-2) expressing human IL-2 as a potential
candidate for suppresses growth of hepatoma
therapy. Journal of Pharmacological Science;
132(1):24–30.
43. Chai Z, Zhang P, Fu F, Zhang X, Liu Y, Hu L, Li
X. (2014): Oncolytic therapy of a recombinant
Newcastle disease virus D90 strain for lung cancer.
Virology Journal; 11(1): 84-92.
44. Buijs P, van Nieuwkoop S, Vaes V, Fouchier R,
van Eijck C, Hoogen B Van Den. (2015):
Recombinant Immunomodulating Lentogenic or
Mesogenic Oncolytic Newcastle Disease Virus for
Treatment of Pancreatic Adenocarcinoma. Viruses;
7(6): 2980–2998.
45. Jebar AH, Errington-Mais F, Vile RG, Selby PJ,
Melcher AA, Griffin S. (2015): Progress in clinical
oncolytic virus-based therapy for hepatocellular
carcinoma. Journal of General Virology; 96(7):
1533–1550.
46. Schirrmacher V. (2016): Fifty Years of Clinical
Application of Newcastle Disease Virus: Time to
Celebrate! Biomedicines; 4(3): 16-29.
47. Peeters BP, de Leeuw OS, Koch G, Gielkens AL.
(1999): Rescue of Newcastle disease virus from
cloned cDNA: evidence that cleavability of the fusion
protein is a major determinant for virulence. Journal
of Virology; 73(6): 5001–5009.
48. Römer-Oberdörfer A, Mundt E, Mebatsion T,
Buchholz UJ, Mettenleiter TC. (1999): Generation
of recombinant lentogenic Newcastle disease virus
from cDNA. Journal of General Virology; 80(11):
2987-2995.
49. Mebatsion T, Verstegen S, De Vaan LT,
Römer-Oberdörfer A, Schrier CC. (2001): A
recombinant Newcastle disease virus with low-level
V protein expression is immunogenic and lacks
pathogenicity for chicken embryos. Journal of
virology; 75(1): 420-428.
50. Song KY, Wong J, Gonzalez L, Sheng G,
Zamarin D, Fong Y. (2010): Antitumor efficacy of
viral therapy using genetically engineered
Newcastle disease virus [NDV (F3aa)-GFP] for
peritoneally disseminated gastric cancer. Journal of
Molecular Medicine; 88(6): 589-596.
Cancer is undoubtedly the most dangerous diseases of present age in terms of both rates of its mortality and emergence. Although early diagnosis, a new generation chemotherapeutic and advanced radiotherapy have emerged through developing new technologies, a certain solution could not be discovered for the cancer. In this case has directed to develop laboratory-based methods of treatment and prevention within advances in biotechnology. The most important one of these laboratory-based techniques is cancer treatment via oncolytic viruses, in other words Oncolytic Virotherapy. These viruses in the environment showing a high affinity to cancer cells have been provided to be more effective by developed in the laboratory. However, in humans, possessing quite complex and powerful operation of the immune system has inhibited to completely affect to the virus. This circumstance has directed to viruses not originate from human, of which has been Newcastle Disease Virus (NDV). Especially non-human animal viruses have not led to adverse effects or let a much lower impact on humans have made them advantageous. Although NDV is highly pathogenic disease of avian species, several successful therapy results have been obtained by its antitumor effects in humans. This review will examine the relationship with the immune system and therapeutic effects of NDV on cancer cells, also laboratory and clinical studies about these issues will be discussed.
References
1. Doyle TM. (1927): B. aertrycke infection of
chicks. Journal of Comparative Pathology and
Therapeutics; 40: 71-75.
2. de Leeuw O, Peeters, B. (1999): Complete
nucleotide sequence of Newcastle disease virus:
evidence for the existence of a new genus within the
subfamily Paramyxovirinae. Journal of General
Virology; 80(1), 131-136.
3. Yusoff K, Tan WS. (2001): Newcastle disease
virus: macromolecules and opportunities. Avian
Pathology; 30: 439 – 455.
4. Cancer Network: Lawrence, L. (2015): "FDA
Approves First Oncolytic Virus With New Melanoma
Therapy".
http://www.cancernetwork.com/melanoma/fdaapproves-
first-oncolytic-virus-new-melanomatherapy,
Erişim tarihi; 10.10.2015.
5. Huang F, Wang BR, Wu YQ, Wang FC, Zhang J,
Wang YG. (2016): Oncolytic viruses against cancer
stem cells: A promising approach for
gastrointestinal cancer. World Journal of
Gastroenterology; 22(35): 7999 – 8009.
6. Seymour LW, Fisher KD. (2016): Oncolytic
viruses: finally delivering. British Journal of Cancer;
114: 357–361.
7. Dharmadhikari N, Mehnert JM, Kaufman HL.
(2015): Oncolytic Virus Immunotherapy for
Melanoma. Current Treatment Options in Oncology;
16(10): 1-15.
8. Sinkovics JG, Horvath JC. (2000): Newcastle
disease virus (NDV): brief history of its oncolytic
strains. Journal of Clinical Virology; 16: 1–15.
9. Schirrmacher V, Haas C, Bonifer R, Ahlert T,
Gerhards R and Ertel C. (1999): Human tumor cell
modification by virus infection: an efficient and safe
way to produce cancer vaccine with pleiotropic
immune stimulatory properties when using
Newcastle Disease Virus. Gene Therapy; 6: 63 – 73..
10. Fiola C, Peeters B, Fournier P, Arnold A,
Bucur M, Schirrmacher V. (2006): Tumor
selective replication of Newcastle Disease Virus:
association with defects of tumor cells in antiviral
defence. International Journal of Cancer; 119(2) :
328 – 338.
11. Ahlert T, Schirrmacher V. (1990): Isolation of
a human melanoma adapted Newcastle disease
virus mutant with highly selective replication
patterns. Cancer Research; 50(18): 5962 – 5968.
12. Janke M, Peeters B, de Leeuw O, Moorman R,
Arnold A, Fournier P, Schirrmacher V. (2007):
Recombinant Newcastle Disease Virus (NDV) with
inserted gene coding for GM-CSF as a new vector for
cancer immunogene therapy. Gene Therapy; 14
(23): 1639 – 1649.
13. Elankumaran S, Rockemann D and Samal SK.
(2006): Newcastle Disease Virus exerts oncolysis
by both intrinsic and extrinsic caspase-dependent
pathways of cell death. Journal of Virology; 80 (15):
7522 – 7534.
14. Fábián U, Csatary C, Szeberényi J, Csatary LK.
(2007): p53-independent endoplasmic reticulum
stress-mediated cytotoxicity of a Newcastle Disease
Virus strain in tumor cell lines. Journal of Virology;
81(6): 2817 – 2830.
15. Lorence RM, Pecora AL, Major PP, Hotte SJ,
Laurie SA, Roberts MS, Groene WS, Bamat, MK.
(2003): Overview of phase I studies of intravenous
administration of PV701, an oncolytic virus. Current
opinion in molecular therapeutics; 5(6): 618-624.
16. Sinkovics JG, Horvath JC. (2000): Vaccination
against human cancers (review). Intertional Journal
of Oncology; 16: 81–96.
17. Liu TC, Kirn D. (2007): Systemic efficacy with
oncolytic virus therapeutics: clinical proof-ofconcept
and future directions. Cancer research;
67(2): 429-432.
18. Apostolidis L, Schirrmacher V, Fournier P.
(2007): Host mediated anti-tumor effect of
oncolytic Newcastle Disease Virus after
locoregional application. International Journal of
Oncology; 31: 1009 – 1019.
19. Takeda K, Kaisho T, Akira S. (2003): Toll-like
receptors. Annual review of immunology; 21(1), 335-
376.
20. Thompson AJ, Locarnini SA. (2007): Toll-like
receptors, RIG-I-like RNA helicases and the antiviral
innate immune response. Immunology and Cell
Biology; 85 (6): 435 – 445.
21. Melchjorsen,J, Jensen SB, Malmgaard L,
Rasmussen SB, Weber F, Bowie AG, Matiakinen
S, Paludan SR. (2005): Activation of innate defense
against a paramyxovirus is mediated by RIG-I and
TLR7 and TLR8 in a cell-type-specific manner.
Journal of virology; 79(20): 12944-12951.
22. Washburn B, Weigand MA, Grosse-Wilde A,
Janke M, Stahl H, Rieser E, Sprick MR,
Schirrmacher V, Walczak H. (2003): TNF-related
apoptosis-inducing ligand mediates tumoricidal
activity of human monocytes stimulated by
Newcastle Disease Virus. Journal of Immunology;
170(4): 1814 – 1821.
23. Koks CA, Garg AD, Ehrhardt M, Riva M,
Vandenberk L, Boon L, De Vleeschouwer S,
Agostinis P, Graf N, Gool SW. (2014): Newcastle
disease virotherapy induces long-term survival and
tumor-specific immune memory in orthotopic
glioma through the induction of immunogenic cell
death. International Journal of Cancer; 136: 313–
325.
24. Magyarics Z, Rajnavölgyi É. (2005):
Professional type I Interferon-producing cells-A
Unique Subpopulation of Dendritic Cells. Acta
microbiologica et immunologica hungarica; 52(3-4):
443-462.
25. Kawai T, Akira S. (2005): Pathogen recognition
with Toll-like receptors. Current opinion in
immunology; 17(4): 338-344.
26. Lindemann J. (1974): Viruses as
immunological adjuvants in cancer. Biochimica et
Biophysica Acta (BBA)-Reviews on Cancer; 355(1):
49-75.
27. Forden C. (2004): Do T lymphocytes correlate
danger signals to antigen?. Medical hypotheses;
62(6): 898-906.
28. Hengel H, Koszinowski UH, Conzelmann KK.
(2005): Viruses know it all: new insights into IFN
networks. Trends in immunology; 26(7): 396-401.
29. von Hoegen P, Zawatzky R, Schirrmacher V.
(1990): Modification of tumor cells by a low dose of
Newcastle Disease Virus: III. Potentiation of tumor
specific cytolytic T cell activity via induction of
interferon alfa, beta. Cellular Immunology; 126: 80 –
90.
30. Termeer CC, Schirrmacher V, Bröcker EB,
Becker JC. (2001): Newcastle-Disease-Virus
infection induces a B7–1/ B7–2 independent T-cellcostimulatory
activity in human melanoma cells.
Cancer Gene Therapy; 7(2): 316 – 323.
31. Washburn B, Schirrmacher V. (2002): Human
tumor cell infection by Newcastle Disease Virus
leads to upregulation of HLA and cell adhesion
molecules and to induction of interferons,
chemokines and finally apoptosis. International
Journal of Oncology; 21(1) : 85 – 93.
32. Cassell WA, Garrett RE. (1965): Virus de la
enfermedad de Newcastle como agente
antineoplásico. Cáncer; 18: 863-868.
33. Lorence RM, Scot Roberts M, O'Neil JD,
Groene WS, Miller JA, Mueller SN, Bamat MK.
(2007): Phase 1 clinical experience using
intravenous administration of PV701, an oncolytic
Newcastle disease virus. Current cancer drug
targets; 7(2): 157-167.
34. Freeman AI, Zakay-Rones Z, Gomori JM,
Linetsky E, Rasooly L, Greenbaum E, Rozenman-
Yair S, Panet A, Libson E, Irving CS, Galun, E.
(2006): Phase I/II trial of intravenous NDV-HUJ
oncolytic virus in recurrent glioblastoma
multiforme. Molecular Therapy; 13(1): 221-228.
35. Hotte SJ, Lorence RM, Hirte HW, Polawski SR,
Bamat MK, O’Neil JD, Roberts MS, Groene WS,
Major PP. (2007): An optimized clinical regimen
for the oncolytic virus PV701. Clinical Cancer
Research; 13(3): 977 – 985.
36. Csatary LK, Csatary C, Gosztonyi G, Bodey B.
(2006): Promising MTH-68/H Oncolytic Newcastle
Disease Virus therapy in human high grade gliomas
Focus on Brain Cancer Research. 69 – 82, Nova
Science Publishers, New York.
37. Csatary LK, Massey RJ. (1993): "Method for
treating viral diseases with attenuated virus”
Washington, DC: U.S. Patent and Trademark Office,
U.S. Patent No. 5,215,745.
38. Nelson NJ. (1999): Scientific interest in
Newcastle disease virus is reviving. Journal of the
National Cancer Institute; 91(20): 1708-1710.
39. Sánchez D, Pelayo R, Medina L, Vadillo E,
Sánchez R, Núñez L, Cesarman-Maus G,
Sarmiento-Silva R. (2015): Newcastle Disease
Virus: Potential Therapeutic Application for Human
and Canine Lymphoma. Viruses; 8(1): 3-14.
40. Zamarin D, Holmgaard RB, Subudhi SK, Park
JS, Mansour M, Palese P, Merghoub T, Wolchok
JD, Allison JP. (2014): Localized oncolytic
virotherapy overcomes systemic tumor resistance
to immune checkpoint blockade immunotherapy.
Science Translational Medicine; 6: 226 -232.
41. Schirrmacher V, Bihari AS, Stücker W,
Sprenger T. (2014): Long-term remission of
prostate cancer with extensive bone metastases
upon immuno- and virotherapy: A case report.
Oncology Letters; 8(6): 2403–2406.
42. Wu Y, He J, An Y, Wang X, Liu Y, Yan S, Ye X, Qi
J, Zhu S, Yu Q, Yin J, Li D, Wang W. (2015):
Recombinant Newcastle disease virus (NDV/Anh-
IL-2) expressing human IL-2 as a potential
candidate for suppresses growth of hepatoma
therapy. Journal of Pharmacological Science;
132(1):24–30.
43. Chai Z, Zhang P, Fu F, Zhang X, Liu Y, Hu L, Li
X. (2014): Oncolytic therapy of a recombinant
Newcastle disease virus D90 strain for lung cancer.
Virology Journal; 11(1): 84-92.
44. Buijs P, van Nieuwkoop S, Vaes V, Fouchier R,
van Eijck C, Hoogen B Van Den. (2015):
Recombinant Immunomodulating Lentogenic or
Mesogenic Oncolytic Newcastle Disease Virus for
Treatment of Pancreatic Adenocarcinoma. Viruses;
7(6): 2980–2998.
45. Jebar AH, Errington-Mais F, Vile RG, Selby PJ,
Melcher AA, Griffin S. (2015): Progress in clinical
oncolytic virus-based therapy for hepatocellular
carcinoma. Journal of General Virology; 96(7):
1533–1550.
46. Schirrmacher V. (2016): Fifty Years of Clinical
Application of Newcastle Disease Virus: Time to
Celebrate! Biomedicines; 4(3): 16-29.
47. Peeters BP, de Leeuw OS, Koch G, Gielkens AL.
(1999): Rescue of Newcastle disease virus from
cloned cDNA: evidence that cleavability of the fusion
protein is a major determinant for virulence. Journal
of Virology; 73(6): 5001–5009.
48. Römer-Oberdörfer A, Mundt E, Mebatsion T,
Buchholz UJ, Mettenleiter TC. (1999): Generation
of recombinant lentogenic Newcastle disease virus
from cDNA. Journal of General Virology; 80(11):
2987-2995.
49. Mebatsion T, Verstegen S, De Vaan LT,
Römer-Oberdörfer A, Schrier CC. (2001): A
recombinant Newcastle disease virus with low-level
V protein expression is immunogenic and lacks
pathogenicity for chicken embryos. Journal of
virology; 75(1): 420-428.
50. Song KY, Wong J, Gonzalez L, Sheng G,
Zamarin D, Fong Y. (2010): Antitumor efficacy of
viral therapy using genetically engineered
Newcastle disease virus [NDV (F3aa)-GFP] for
peritoneally disseminated gastric cancer. Journal of
Molecular Medicine; 88(6): 589-596.
Koç BT. Terapötik Newcastle Disease Virus (NDV)’un İmmun Sistem ve İnsan Tümör Hücresi ile Etkileşimi: Onkolitik Viroterapi. J Cumhuriyet Univ Health Sci Inst. 2016;1(2):8-18.
The Journal of Sivas Cumhuriyet University Institute of Health Sciences is an international, peer-reviewed scientific journal published by Sivas Cumhuriyet University, Institute of Health Sciences.